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Virtual Devices. Pre-virtualization is unique in 
offering efficient device virtualization.  The guest OS 
communicates to virtual devices via its standard 
device drivers (e.g., the DP83820 network driver).  
The guest's drivers are rewritten to invoke the in-place 
VMM, which translates the device's micro ops into 
macro ops.

Advantages:
• Unnecessary to write high-performance custom 

virtual drivers.
• Easy to enable a new guest OS with performance.
• Obeys the platform API, and thus e.g. supports 

migration at runtime to other hypervisors.

Migrate between incompatible hypervisors at runtime
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Mostly automated
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Para-virtualization achieves great performance and support for 
x86, by manually porting the OS to the API of a single hypervisor.  The 
costs are the abandonment of virtualization's core features, substantial 
engineering effort, and introduction of new bugs.
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Pure virtualization, the classic approach, faithfully 
emulates the platform API (i.e., instruction set and devices), 
easily supporting many types of guest operating systems.  
The cost is a high runtime overhead due to trapping on 
sensitive operations.  Also, x86 is difficult to support.
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Conclusion.  Pre-virtualization offers performance rivaling 
para-virtualization, and by using the platform API, pre-virtualization 
also offers many of the advantages of pure virtualization.  Pre-
virtualization's automation substantially reduces the engineering 
effort to build a high-performance virtual machine.
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Performance.  Netperf receive benchmark that transferred 
1GB of data. Test machine: 2.8GHz Pentium 4, configured for 
256MB, XT-PIC, direct device access, running Debian 3.1 from 
local SATA.  Client machine: 1.4GHz Pentium 4.  Gigabit Ethernet 
connection.

In device driver reuse, we used two VMs: one with indirect network 
access, the other with direct access.  The indirect VM either used 
a pre-virtualized DP83820 driver, or para-virtualization with a 
custom virtual driver.
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Overview.  The virtual machine (VM) helps to address a variety 
of scenarios, while using the same guest OS.  The VM enables the 
use of different hypervisors appropriate for each particular scenario 
and its trade-offs.

The VM adapts to the scenarios, because it maps the platform API 
(i.e., the instruction set and devices) to the hypervisor's API.  Pure 
virtualization achieves this goal, but with a high run-time overhead.  
Para-virtualization solves the performance problem, but throws out 
support for multiple hypervisors.  To unite the two, we propose pre-
virtualization, which uses the platform API with the performance of 
para-virtualization.


