
Pre-Virtualization: Uniting Two Worlds
Joshua LeVasseur Volkmar Uhlig Ben Leslie Matthew Chapman Gernot Heiser
Universität Karlsruhe (TH), Germany IBM Watson Research Center, NY National ICT Australia

University of New South Wales
National ICT Australia

University of New South Wales
National ICT Australia

University of New South Wales

Information and source code:
http://l4ka.org/projects/virtualization/

Source is available under the BSD license.
Copyright © 2005 Universität Karlsruhe (TH)

Virtualization-
friendly binary

Raw hardware

Virtualization-
friendly binary

Xen hypervisor

in-place VMM

Virtualization-
friendly binary

L4Ka::Pistachio
μkernel

in-place VMM

Virtualization-
friendly binary

Linux

in-place VMM

OS source
code

Compiler with
pre-virtualization

Virtualization-
friendly binary

Virtualization sensitive instructions.
Padded with NOPs.

Rewritten instructions: Function
calls to the in-place VMM.

In-place VMM translates platform
API to hypervisor API.

Obeys platform API.

Virtualization-
friendly binary

L4Ka::Pistachio μkernel

in-place VMM

DP83820

Networking
subsystem

e1000SCSI

Disk
subsystem

SATA

Virtual Devices. Pre-virtualization is unique in
offering efficient device virtualization. The guest OS
communicates to virtual devices via its standard
device drivers (e.g., the DP83820 network driver).
The guest's drivers are rewritten to invoke the in-place
VMM, which translates the device's micro ops into
macro ops.

Advantages:
• Unnecessary to write high-performance custom

virtual drivers.
• Easy to enable a new guest OS with performance.
• Obeys the platform API, and thus e.g. supports

migration at runtime to other hypervisors.

Migrate between incompatible hypervisors at runtime

Follows platform API

Mostly automated

Single guest binary, runs on all hypervisors

High performance

Quickly enable a new hypervisor

Quickly port a new guest OS

High performance virtual devices
Compatible with x86

P
ur

e
vi

rt
ua

liz
at

io
n

✓
✓

✓
✓
✓
✓
✓
✓
✓

✓
✓

✓
✓

✓

-
?

-
-

-
-
-
-

-
✓

✓

-
-

Comparison

P
re

-v
irt

ua
liz

at
io

n

P
ar

a-
vi

rt
ua

liz
at

io
n

Para-virtualization achieves great performance and support for
x86, by manually porting the OS to the API of a single hypervisor. The
costs are the abandonment of virtualization's core features, substantial
engineering effort, and introduction of new bugs.

Linux source
code

L4Linux

XenoLinux

Para-virtualization,
several years, $$

Pure virtualization, the classic approach, faithfully
emulates the platform API (i.e., instruction set and devices),
easily supporting many types of guest operating systems.
The cost is a high runtime overhead due to trapping on
sensitive operations. Also, x86 is difficult to support.

Standard
OS binary

VMM

Expensive and frequent privileged traps
on virtualization sensitive instructions.

Custom driver

DP83820 emulation

V
irt

ua
l D

riv
er

707.5

707.1

60.3%

59.8%

18.21

18.06

System Xput [Mb/s] CPU util cycles/byte

Conclusion. Pre-virtualization offers performance rivaling
para-virtualization, and by using the platform API, pre-virtualization
also offers many of the advantages of pure virtualization. Pre-
virtualization's automation substantially reduces the engineering
effort to build a high-performance virtual machine.

Li
nu

x
2.

6.
9

native, raw

NOPs, raw

L4Ka::Linux

L4Ka in-place VMM

XenoLinux

Xen in-place VMM

780.9

780.2

780.1

779.8

780.7

778.7

35.2%

33.5%

35.7%

37.3%

41.3%

41.1%

System Xput [Mb/s] CPU util cycles/byte

9.64

9.17

9.77

10.22
11.29

11.28

native, raw

NOPs, raw

XenoLinux

Li
nu

x
2.

4.
31 740.8

740.8

739.6

36.0%

36.4%

43.2%

10.39

10.49

12.48

Performance. Netperf receive benchmark that transferred
1GB of data. Test machine: 2.8GHz Pentium 4, configured for
256MB, XT-PIC, direct device access, running Debian 3.1 from
local SATA. Client machine: 1.4GHz Pentium 4. Gigabit Ethernet
connection.

In device driver reuse, we used two VMs: one with indirect network
access, the other with direct access. The indirect VM either used
a pre-virtualized DP83820 driver, or para-virtualization with a
custom virtual driver.

Top secret

Linux
guest
OS

Performance
hypervisor

Linux
guest
OS

Security
hypervisor

Linux guest OS

Linux guest OS

Same guest OS.
Different hypervisors.
Different scenarios.

Overview. The virtual machine (VM) helps to address a variety
of scenarios, while using the same guest OS. The VM enables the
use of different hypervisors appropriate for each particular scenario
and its trade-offs.

The VM adapts to the scenarios, because it maps the platform API
(i.e., the instruction set and devices) to the hypervisor's API. Pure
virtualization achieves this goal, but with a high run-time overhead.
Para-virtualization solves the performance problem, but throws out
support for multiple hypervisors. To unite the two, we propose pre-
virtualization, which uses the platform API with the performance of
para-virtualization.

