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Abstract

Device drivers account for the majority of an operating
system’s code base, and reuse of the existing driver infras-
tructure is a pragmatic requirement of any new OS project.
New operating systems should benefit from the existing de-
vice driver code base without demanding legacy support
from the kernel.

Instead of trying to directly integrate existing device
drivers we propose a more radical approach. We run the
unmodified device driver, with its complete original OS, iso-
lated in a virtual machine. Our flexible approach, requiring
only minimal support infrastructure, allows us to run any
existing device driver, independently of the OS or driver
vendor.

1 Introduction

In today’s operating systems device drivers account for
the largest part of the code base1 [5]. The support of a suf-
ficiently wide variety of legacy devices is a tremendous de-
velopment effort for every OS project. Rewriting all device
drivers can be considered impossible, both due to the devel-
opment and testing effort as well as lack of documentation
and accessibility of hardware.

A technique to reuse binary drivers is via cohosting [14],
where the processor is multiplexed between two collaborat-
ing operating systems, with one providing device support.
An alternative approach, typically applied at the source
code level, is to reuse device drivers from the rich driver
base of such systems as Linux or BSD with minimal or no
changes [8, 10, 4, 2, 17, 9]. A software adaptation layer in
the new OS provides the expected execution environment of
the driver’s original kernel. However, the adaptation layer
requires a significant engineering and validation effort.

The engineering effort is influenced by the interface
complexity. Typical monolithic construction permits device

1For example, Linux 2.4.1 drivers account for 70% of the IA32 code
base.

drivers to access their original OS’s internals, and they may
freely modify data structures and invoke kernel functions.
Thus the interface surface area between the device driver
and its original OS may be large. When emulated in a new
environment, full semantics must be maintained. In many
cases the semantics are undocumented, are not specified,
or even diverge from their specifications. Device drivers
within the same class of devices may not even share the
same interface surface. Each re-used driver needs valida-
tion in the new environment, and revalidation in response to
changes and updates to the original OS.

We propose an alternative approach for reuse of legacy
device drivers. We use the complete original OS itself as the
compatibility wrapper. The original OS effectively becomes
an execution container for the driver. Using software parti-
tioning techniques we strictly isolate this driver container
and the new OS from each other. The partitioning can be
performed by machine-virtualization [11] or paravirtualiza-
tion [11,19,3].

To access devices driven by the driver container, we add
a request interface which injects externally generated device
requests. As in a traditional client-server scenario, the new
OS acts as a client to the driver container.

At first our approach seems excessive, but it effectively
eliminates most of the adaptation layer problems, and if
carefully implemented it performs well and can be resource
efficient. A necessity is that the driver OS can be extended
with the request interface, which is usually trivial, for exam-
ple by adding a loadable kernel module. By maintaining the
complete execution environment we (almost) preserve all
implicit semantics. When running in a full virtual machine
the necessary code modification to the driver OS is limited
to the interface extension. Thus, our approach is also ap-
plicable to proprietary operating systems. This particularly
opens an update path to newer operating systems on irre-
placeable legacy hardware (e.g., use Windows 95 drivers
under Windows XP for obsolete hardware).

The remainder of the paper is structured as follows. In
Section2 we explain our architecture in more detail. Sec-
tion 3 addresses virtualization, resource management, and
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trust issues of device drivers in virtual machines. In Section
4 we briefly evaluate our approach, and Section5 discusses
future work and concludes.

2 Architecture

The architecture supports several device driver reuse sce-
narios, from unmodified binary device drivers to recompiled
device drivers in a paravirtualization environment. In each
scenario, the device driver operating system (DD/OS) exe-
cutes deprivileged within a virtual machine.

A translation module is added to the DD/OS, which be-
haves as a server in a client-server model, and maps client
requests into sequences of DD/OS primitives. It likewise
monitors for completion of the requests, and sends appro-
priate responses to the client (see Figure1).

Via co-existing virtual machines, device drivers can ex-
ecute in separate yet collaborating device driver operating
systems. Device drivers from incompatible operating sys-
tems can coexist. If one device driver relies on another (e.g.,
a device needs bus services), and separate virtual machines
host the device drivers, then a virtualized device module in
the client DD/OS establishes a client-server relationship be-
tween two device driver VMs.

The scope of the software engineering effort to reuse de-
vice drivers, other than the virtual machine implementation
itself, consists of the translation modules. For each class of
devices in a particular flavor of DD/OS, a dedicated trans-
lation module must be developed. The translation module
enables reuse of all devices within the device class.

The translation module may interface with the DD/OS
at several layers of abstraction. Available interfaces in-
clude the user level API of the DD/OS (e.g., file access
to emulate a raw disk), raw device access from user level
(e.g., Linux raw sockets), abstracted kernel module inter-
faces such as the buffer cache, or the kernel primitives of
the device drivers in the DD/OS.

3 Virtualization Issues

The isolation of the DD/OS via machine-virtualization
and paravirtualization introduces several issues: the DD/OS
performs DMA operations, it can violate the special timing
needs of physical hardware, and it consumes resources be-
yond those which a device driver requires. Likewise, legacy
operating systems are not designed to collaborate with other
operating systems to control the devices within the system.

3.1 DMA Address Translation

DMA in commodity systems operates in the physical ad-
dress space. Before issuing a DMA request to hardware the
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Figure 1.Interaction of a client with multiple device
driver OS’s. Each DD/OS has direct access to its
managed device.

OS translates its kernel memory addresses into the physical
address space. However, the additional memory translation
indirection introduced by the virtual machine monitor ren-
ders the OS’s addresses invalid, and thus referencing the
wrong physical pages.

DMA address remapping, as supported by the AMD
Opteron [1], HP’s ZX1 chipset [6] and the Alpha 21172
chipset [7], provides address translation on DMA addresses,
similarly to virtual memory for the main processor. The de-
vice is known as an IO-MMU. The virtual machine monitor
(VMM), using the IO-MMU, can transparently remap the
addresses on the I/O bus so that DMA works as expected by
the DD/OS2.

In systems without such hardware support DMA ad-
dresses have to be translated in software. Since knowl-
edge to operate the DMA engines is integrated in the device
drivers, the virtual machine monitor would have to under-
stand each device’s semantics to transparently rewrite the
DMA addresses—which would effectively render our ap-
proach useless.

In a paravirtualized environment we have the ability to
modify the address translation infrastructure in the DD/OS,
taking the VM monitor’s additional memory indirection
into account3. Before issuing a device request the DD/OS
consults the VMM for the current memory translation and
pins it for the duration of the DMA operation.

In a fully virtualized environment, however, we cannot
modify the DD/OS. Instead, we use a memory mapping

2To support concurrent DMA operations by multiple DD/OS’s with
different memory translations requires the IO-MMU to support distinct
address spaces. We are currently investigating time-multiplexing of the
IO-MMU between DD/OS’s when the IO-MMU lacks support for address
spaces.

3The changes required for a Linux 2.4.21 kernel are limited to three
functions:virt to bus , bus to virt , andpage to bus .
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Figure 2.Remapping of physical memory for DMA.
All driver VMs share code and read-only data. The
page pool gets dynamically reallocated between the
different OS instances. Memory areas in the VMs
marked in white are valid for DMA.

scheme known from single address space OS’s. By cau-
tiously placing the DD/OS, the VMM ensures that mem-
ory which is accessed via DMA is mapped idempotently to
physical memory. If an OS only performs DMA on read-
only memory and dynamically allocated memory from the
page pool then we can run multiple instances of the same
DD/OS image concurrently. The OS code and read-only
data are shared by all OS instances. The dynamic page
pool is mapped to all DD/OS’s, whereby each instance
has its distinct allocated partition as shown in Figure2.
Memory ballooning [18] supports cooperative re-allocation
of physical memory between DD/OS’s. The single ad-
dress space method allows multiple, concurrent DD/OS in-
stances, thereby providing increased reliability and concur-
rency; however it is limited insofar that we can only use a
single kernel image.

3.2 Trust and Reliability

Code with unrestricted access to DMA-capable hardware
devices can circumvent standard memory protection mech-
anisms [12]. A malicious driver can potentially elevate its
privileges by using DMA to replace OS code or data. In any
system without explicit hardware support to restrict DMA
accesses, we have to consider device drivers as part of the
trusted computing base.

Isolating device drivers in separate virtual machines can
still be beneficial. In [15] Swift et al. use very weak pro-
tection by leaving device drivers fully privileged, but still
report a successful recovery rate of 99% for synthetically
injected driver bugs. The fundamental assumption is that
device drivers are usually faulty, but not malicious.

We differentiate between three trust scenarios. In the first
scenario only the client of the DD/OS is untrusted. In the
second scenario both the client as well as the DD/OS are
untrusted by the VMM. In the third scenario the client and
DD/OS additionally distrust each other. Note that the latter
two scenarios can only be enforced with DMA restriction.

During a DMA operation page translations targeted by
DMA have to stay constant, i.e. pinned. If the DD/OS’s
memory is not statically allocated it has to explicitly pin

the memory. If the DD/OS initiates DMA in or out of the
client’s memory to eliminate copying overhead, that mem-
ory has to be pinned as well. In case the DD/OS is untrusted,
the VMM has to enable DMA permissions to the memory
and to ensure that the DD/OS cannot run denial-of-service
attacks by pinning excessive amounts of physical memory.

If the DD/OS and client distrust each other, further provi-
sions are required. If the DD/OS gets accounted for pinning
memory, a malicious client could run a DoS attack against
the driver. A similar attack by the DD/OS is possible if the
client gets accounted for pinning. The solution is a coop-
erative approach with both untrusted parties involved. The
client performs the pin operation on its own memory which
eliminates a potential DoS attack by the DD/OS. Then, the
DD/OS validates with the VMM that the pages are suffi-
ciently pinned. By using timely bound pinning [13] guaran-
teed by the VMM, the DD/OS can safely perform the DMA
operation.

3.3 Timing

Traditional OS’s usually assume exclusive access to the
processor with guarantees about execution time and tim-
ing behavior. With multiple VMs sharing resources this as-
sumption does not hold.

If a VM is completely isolated from an external time
base, it is sufficient to introduce a virtual time base and
to run the virtual clock slower. However, since hardware
devices are not adapted to this virtual time base, timing
constraints may be violated. A slower clock is problematic
when operations on the device have to be executed within
a distinct time period, such as consecutive register accesses
or interrupt handling.

The DD/OS is subject to the scheduling regime of the
VMM. Arbitrary preemption of the DD/OS may lead to
faulty behavior of the device. By using a heuristic we try
to avoid preemption in time critical sections. Similarly to
the scheme we described in [16] we differentiate between
safe and unsafe preemption states for time-critical sections.
A safe state is when preemption can take place because no
critical section is active, an unsafe preemption state other-
wise.

To ensure uninterrupted atomic execution of time critical
sections, OS’s usually disable interrupts on the local proces-
sor. Based on this observation we define an unsafe state to
be when interrupts are disabled on a virtual CPU.

When the VMM decides to preempt a DD/OS in an un-
safe state, the preemption is postponed until the DD/OS re-
enables interrupts or voluntarily releases the CPU. If the ar-
chitecture allows to selectively receive a trap upon reactiva-
tion of interrupts, as possible with IA32’s virtual interrupt
pending flag, the additional overhead is minimal, since lim-
ited to the rare cases when preemptions are postponed. An
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upper time bound guarantees that the DD/OS cannot mo-
nopolize the system.

3.4 Resource Consumption

An OS is designed to control the complete system hard-
ware, and so includes a data and code memory footprint for
handling services unrelated to the reused device driver. It
expects sufficient physical resources to satisfy classic work-
loads, and will try to optimally preallocate the resources in
expectation of running classic workloads. The OS can con-
sume resources even when the device driver is idle, such as
CPU time to service a periodic timer interrupt.

The resource costs of a device driver and its OS extend
beyond the resources inherently associated with a device
driver. The device driver OS provides a compatibility layer
at the cost of increased resource consumption. Every in-
stance of a device driver OS will contribute to increased
resource demands.

A virtual machine monitor can forcibly limit the re-
sources consumed by its guest OS, and transparently reallo-
cate resources on demand, as with traditional OS memory
sharing techniques. Memory sharing and copy-on-write can
additionally amortize the costs of multiple device driver in-
stances. Page sharing is detectable via the process of page
scanning [18]. Likewise, memory can be provided to the
device driver OS when necessary, and later reclaimed via
memory ballooning [18].

Some legacy operating systems provide control param-
eters to tune the system for space efficiency or speed effi-
ciency. These parameters can be configured for a device
driver workload to help reduce resource consumption.

With paravirtualization, the functionality of the device
driver OS can be restricted in scope to the services neces-
sary for executing a device driver, to the extent of disabling
user-level application support. Modifications to its behav-
ior can favor the device driver workload, rather than classic
workloads.

3.5 Shared Hardware and Recursion

When running multiple DD/OS’s some hardware re-
sources are shared. This includes for example the PCI con-
figuration space, interrupt controllers and processor con-
figuration registers such as MTRRs on IA32. Different
DD/OS’s may even have conflicting configurations, such as
for PCI bridges or interrupt controller modes.

If the driver for the shared device can be replaced we can
use a simple recursive model. Instead of accessing the hard-
ware directly by the DD/OS, we forward the request to yet
another DD/OS. For drivers where replacement is impos-
sible, we use full virtualization by trapping and translating
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pci full virtualization pci full virtualization 
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Figure 3.A disk and a network driver OS, unable
to replace their PCI drivers, use full virtualization of
PCI to achieve centralized reuse of an isolated PCI
driver. The virtualization layer traps accesses to PCI,
and transforms them into requests to the PCI DD/OS.

device access (see Figure3). The VMM then either synthe-
sizes the device request and forwards it to the corresponding
DD/OS or handles the request directly.

Commodity OS’s usually scan the system busses for
available devices and load the corresponding drivers. When
giving unrestricted access to busses like PCI, each driver
OS would potentially instantiate its own device driver. To
avoid conflicts we partition devices and only report those
which should be managed by a specific driver OS. By only
reporting a single PCI bus with no bridges we try to avoid
bus reconfiguration which could lead to conflicting config-
urations between multiple DD/OS’s4.

4 Evaluation

For an initial evaluation we use a set of paravirtualized
Linux kernels adapted to our VMM, which we consider to
approximate a fully virtualized solution, albeit with superior
performance [3]. The first Linux kernel serves as the device
driver OS and has access to most platform resources, but
runs deprivileged. It exports a device driver request inter-
face for the network device class, implemented as a load-
able device driver module. The DD/OS reuses unmodified
Linux network drivers, but recompiled to suit the paravirtu-
alization environment.

The other Linux kernels lack direct device access and in-
stead interface with the DD/OS for network services. They
each use a specialized network device driver which com-

4For example Linux does not relocate devices if the BIOS correctly
enabled and placed them.
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municates with the DD/OS. The client Linux kernels, while
adapted to the VMM, run unmodified Linux applications
such as the Apache web server.

4.1 Network Interface

We implement a network model which treats the clients
as direct participants of the external physical network. The
DD/OS serves as a network bridge. The VMM allocates vir-
tualized LAN addresses for the clients to accompany pack-
ets on the external network.

Network interfaces manage two types of packet flows:
synchronous outbound packets, and asynchronous inbound
packets. The clients own the pages backing outbound pack-
ets while the DD/OS owns the pages backing inbound pack-
ets. The network device driver interface uses two mecha-
nisms to transfer packets between the DD/OS and client, to
honor the semantics which accompany the two classes of
page ownership.

For efficient outbound packet transfer, the client and
server communicate enough information to support DMA
directly from the client’s packets. The server validates
and translates the client’s addresses, and validates pinning
rights. The client and server communicate via a shared de-
scriptor ring on a set of pages mapped into both address
spaces.

The Linux network bridging module in the DD/OS di-
rects relevant inbound packets to our translation layer.
The translation layer queues the packets to the appropriate
clients, and eventually copies the data to pages owned by
the clients.

4.2 Initial Results

We have successfully tested the functionality of our
translation layer reusing Linux’s e1000 and e100 device
drivers, which control the Intel gigabit and 100Mbit net-
work controllers respectively.

The number of source lines of code for the translation
layer in the DD/OS is 1802. Another 770 lines compose
the virtual device driver in the client Linux. In contrast, the
actual Linux e1000 device driver consists of 7903 source
lines of code, and the Linux e100 device driver consists of
5633.

We measured the throughput of the TTCP benchmark ex-
ecuting in a paravirtualized Linux, and isolated from the
DD/OS which provides the reused e1000 adapter. Through-
put and CPU utilization were measured with the perfor-
mance counters of the 2.8GHz Pentium 4, and compared
to the performance of native Linux on the raw hardware.
The reused device driver achieved throughput within 2.5%
of native Linux, but with 1.46x more CPU utilization for

sending, and 2.3x more CPU utilization for receiving (us-
ing packet copying). A detailed analysis, along with a study
of CPU load, is planned for a future paper.

5 Conclusion and Outlook

We propose a solution for unmodified device driver
reuse, which disentangles the goal of reuse from the task
of designing a new operating system kernel. By partition-
ing the device driver at user level, supported by its original
OS, we achieve unmodified driver reuse with minimal sup-
port infrastructure to interface a device driver with the sys-
tem. The isolation further supports coexistence of device
drivers from incompatible operating systems, and improves
dependability.

We are working on determining the limits of the solu-
tion’s performance, and how to further reduce code develop-
ment for the interface layers. We also study how separation
of device drivers improves dependability, and the associated
performance costs.
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