
L4 eXperimental Kernel
Reference Manual

Version X.2

System Architecture Group
Dept. of Computer Science

Universität Karlsruhe
(L4Ka Team)

l4spec@l4ka.org

Document Revision 6
November 17, 2006

Copyright c© 2001–2004 by System Architecture Group, Department of Computer Science, Universität Karlsruhe.

THIS SPECIFICATION IS PROVIDED “AS IS” WITHOUT ANY WARRANTIES, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-
INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OF ANY PROPOSAL, SPECIFI-
CATION OR SAMPLE.

Permission to copy and distribute verbatim copies of this specification in any medium for any purpose without fee or royalty is hereby granted. No right to
create modifications or derivates is granted by this license. The L4Ka Team may make changes to this specification at any time, without notice. The latest
revision of this document is available at http://l4ka.org/.

http://l4ka.org/

Contents

About This Manual vii
Introductory Remarks . vii
Understanding This Document . viii
Notation . ix
Using the API . x
Revision History . xi

1 Basic Kernel Interface 1
1.1 Kernel Interface Page . 2
1.2 KERNELINTERFACE . 7
1.3 Virtual Registers . 11

2 Threads 13
2.1 ThreadId . 14
2.2 Thread Control Registers (TCRs) . 16
2.3 EXCHANGEREGISTERS . 18
2.4 THREADCONTROL . 22

3 Scheduling 25
3.1 Clock . 26
3.2 SYSTEMCLOCK . 27
3.3 Time . 28
3.4 THREADSWITCH . 30
3.5 SCHEDULE . 31
3.6 Preempt Flags . 35

4 Address Spaces and Mapping 37
4.1 Fpage . 38
4.2 UNMAP . 40
4.3 SPACECONTROL . 43

5 IPC 47
5.1 Messages And Message Registers (MRs) . 48
5.2 MapItem . 53
5.3 GrantItem . 55
5.4 StringItem . 56
5.5 String Buffers And Buffer Registers (BRs) . 59
5.6 IPC . 61

6 Miscellaneous 69
6.1 ExceptionHandler . 70
6.2 Cop Flags . 71
6.3 PROCESSORCONTROL . 72
6.4 MEMORYCONTROL . 74

7 Protocols 77
7.1 Thread Start Protocol . 78
7.2 Interrupt Protocol . 79
7.3 Pagefault Protocol . 80
7.4 Preemption Protocol . 81
7.5 Exception Protocol . 82
7.6 Sigma0 RPC protocol . 83
7.7 Generic Booting . 86

iv CONTENTS

A IA-32 Interface 89
A.1 Virtual Registers . 90
A.2 Systemcalls . 93
A.3 Kernel Features . 96
A.4 IO Ports . 97
A.5 Space Control . 98
A.6 Cacheability Hints . 99
A.7 Memory Attributes . 100
A.8 Exception Message Format . 101
A.9 Processor Mirroring . 102
A.10 Booting . 103

B IA-64 Interface 105
B.1 Virtual Registers . 106
B.2 PAL and SAL Access . 108
B.3 Systemcalls . 109
B.4 PCI Configuration Space . 114
B.5 Cacheability Hints . 115
B.6 Memory Attributes . 116
B.7 Memory Descriptors . 117
B.8 Exception Message Format . 118

C PowerPC Interface 119
C.1 Virtual Registers . 120
C.2 Systemcalls . 122
C.3 Memory Attributes . 126
C.4 Exception Message Format . 127
C.5 Processor Mirroring . 129
C.6 Booting . 130

D PowerPC64 Interface 131
D.1 Virtual Registers . 132
D.2 Systemcalls . 134
D.3 Memory Attributes . 139
D.4 Exception Message Format . 140
D.5 Booting . 142

E Alpha Interface 143
E.1 Virtual Registers . 144
E.2 Systemcalls . 146
E.3 Booting . 150

F MIPS-64 Interface 151
F.1 Virtual Registers . 152
F.2 Systemcalls . 154
F.3 Memory Attributes . 159
F.4 Exception Message Format . 160
F.5 Booting . 162

G AMD64 Interface 163
G.1 Virtual Registers . 164
G.2 Systemcalls . 167
G.3 IO Ports . 172
G.4 Cacheability Hints . 173
G.5 Memory Attributes . 174
G.6 Exception Message Format . 175
G.7 Processor Mirroring . 176
G.8 Booting . 177

H SPARC v9 Interface 179
H.1 Virtual Registers . 180
H.2 Systemcalls . 182

CONTENTS v

I ARM Interface 187
I.1 Virtual Registers . 188
I.2 Systemcalls . 190
I.3 Memory Attributes . 193
I.4 Space Control . 194
I.5 Exception Message Format . 195
I.6 Booting . 197

J Generic BootInfo 199
J.1 Generic BootInfo . 200
J.2 BootInfo Records . 202

K Development Remarks 205
K.1 Exception Handling . 205

Table of Procs, Types, and Constants 207

Index 215

vi CONTENTS

About This Manual

Introductory Remarks

Purpose of This Document

This L4 Reference Manual serves as defining document for all L4 APIs and ABIs. Primarily, it addresses L4 microkernel
implementors as API/ABI suppliers and code-generator or library implementors as API/ABI users. The reference manual
assumes intimate knowledge of basic L4 concepts and hardware architecture. Its key point is precise definition, not
explanation and illustration. The

L4 System Programmer’s Manual

is intended to support programmers using L4. It explains and illustrates fundamental concepts and describes in more
detail how (and why) to use which function, etc.

Maintainers

The document is maintained by the following members of the L4Ka Team:

• Uwe Dannowski (ud3@ira.uka.de)

• Joshua LeVasseur (jtl@ira.uka.de)

• Espen Skoglund (esk@ira.uka.de)

• Volkmar Uhlig (volkmar@ira.uka.de)

Credits

This manual is based on a final draft by Jochen Liedtke. It reflects his outstanding work on the L4 micro-
kernel and systems research in general. Only his vision of system design made this work possible. Jochen
defined the state of the art of microkernel design for nearly a decade. We thank him for his support and try
to continue the work in his spirit.

Helpful contributions for improving this reference manual and the L4 interface came from many persons, in particular
from Alan Au, Marcus Brinkmann, Philip Derrin, Kevin Elphinstone, Bryan Ford, Andreas Haeberlen, Hermann Härtig,
Gernot Heiser, Michael Hohmuth, Trent Jaeger, Ben Leslie, Jork Löser, Frank Mehnert, Yoonho Park, Marc Salem, Carl
van Schaik, Sebastian Schönberg, Cristan Szmajda, Harvey Tuch, Marcus Völp, Neal Walfield, Adam Wiggins, Simon
Winwood, and Jean Wolter.

Document History

draft by Jochen Liedtke ??/?? - 06/01
review by L4Ka Team 06/01 - 09/01
L4 developers review Q4/01
release 01/02

viii ABOUT THIS MANUAL

Understanding This Document

This L4 Reference Manual defines the generic API for all 32-bit and 64-bit machines. As such, the generic reference
manual is independent of specific processor architectures. It is complemented by processor-specific ABI specifications.
Some of them can be found in the appendix of this document.

In this document, we differentiate between Logical Interface, Generic Binary Interface, Generic Programming Inter-
face, Convenience Programming Interface and Processor-specific Binary Interface.

Logical Interface The logical interface defines all concepts and logical objects such as system-call operations,
logical data objects, data types and their semantics. Altogether, they form the logical L4 API.

Generic Binary Interface
Binary representations of most data types and generic data objects are defined independently of
specific processors (although there are two different versions, one for 32-bit and a second one
for 64-bit processors). Both versions together form the generic binary interface of L4.

From a purist point of view, logical interface plus generic binary interface could be regarded as a complete specification of
the hardware-independent L4 microkernel interface. However, for ease-of-use and standardization reasons, the mentioned
two fundamental interfaces are complemented by two more interface classes:

Generic Programming Interface
The generic programming interface defines the objects of the logical interface and the generic
binary interface as pseudo C++ classes. The language binding for regular C is for the most part
identical to C++. For the cases where the C language causes function naming conflicts, the C
version of the function name is given in brackets.
For the time being, only the C and C++ versions of the API are specified. The concrete syntax
of other language interfaces will be left open. Later on, all language bindings will be included
in the generic programming interface.

Convenience Programming Interface
This interface is not part of the L4 microkernel specification in the strict sense. All of its data
types and procedures can be implemented using the generic programming interface. Strictly
speaking, it is an interface on top of the microkernel that makes the most common operations
more easily usable for the programmer.
It is important to understand that convenience and ease-of-use, not completeness, is the criterion
for this interface. The convenience programming interface supports programmers by offering
operations that together cover about 95% of the required microkernel functionality. For the
remaining 5%, the programmer has to use the basic (not so convenient) operations of the generic
programming interface.
Obviously, the convenience programming interface is not mandatory. Consequently, from a
minimalist point of view, there is no need to include it in the generic L4 specification.

Nevertheless, for reasons of standardization and thus portability of software, every
complete L4 language binding has to include the entire convenience programming
interface.

Implementation remark: Although the convenience interface can be completely implemented
on top of the generic programming interface, i.e., processor independently, the implementor
of the convenience interface may implement it hardware-dependently and thus incorporate any
optimization that becomes possible through a specific processor-specific binary interface.

The last interface class is not part of the generic L4 API specification.

Processor-specific Binary Interface
Defines the processor-specific binary interface.

ABOUT THIS MANUAL ix

Notation

Basic Data Types

This reference manual describes the L4 API and ABI for both 32-bit and 64-bit processors. The data type Word denotes
a 32-bit unsigned integer on a 32-bit processor and a 64-bit unsigned integer on a 64-bit processor. Word64, Word32, and
Word16 denote 64, 32, and 16-bit words independent of the processor type.

Privileged Threads

Some system calls can only be executed by privileged threads. Any thread belonging to the same address space as one of
the initial threads created by the kernel upon boot-time (see page 86) are treated as privileged.

Bit Fields

Bit-field lengths are denoted as subscripts (i/j) where i relates to a 32-bit processor and j to a 64-bit processor. Bit-field
subscripts (i) specify bit fields that have the same size for both 32-bit and 64-bit processors. Byte offsets are given as
±i /± j for 32-bit and 64-bit processors. If all bit-fields of a specified word only add up to 32 bits, the remaining upper
32 bits on 64-bit processors are undefined or ignored.

Undefined, Ignored, and Unchanged

∼ Output parameters or bit fields can be undefined. Corresponding parameters or fields are denoted
by ∼. They have no defined value on output, i.e., they may have any value or may even be
inaccessible. Any algorithm relying on the value of undefined parameters or bit fields is defined
to be incorrect. + No covert channel.

– Input parameters or bit fields can be specified as ignored, denoted by –. Such parameters or fields
can hold any value without affecting the invoked service. – is also used to define bit fields that
are available for additional information. For example, fpage denotations contain some ignored
bits that are used for access control bits in some system calls.

≡ In processor-specific interfaces, registers are sometimes defined to be unchanged. This is de-
noted by ≡.

Upward Compatibility

The following holds for future API versions and sub-versions that are specified as upward-compatible to the current
version.

Output parameters and bit fields.
Fields currently defined as undefined (∼) may be specified as defined. Such newly defined fields
will only deliver additional information. They can be ignored if the system call is used exactly
like specified in the current API.

Input parameters and bit fields.
Fields currently defined as ignored (–) may be specified as defined. However, the content of such
fields will be only relevant for newly defined features. Such fields will be ignored if a system
call is used with the “old” semantics specified in this API.

x ABOUT THIS MANUAL

Using the API

Naming

A programmer can use all function, type, and constant definitions defined in the generic and convenience programming
interfaces throughout this manual. All definitions must, however, be prefixed with the string “L4 ” and type names
must contain the “ t” suffix (e.g., use “L4 Ipc ()” and “L4 MsgTag t” rather than “Ipc ()” and “MsgTag”). The interfaces
are currently only defined for C++ and C. In some cases the naming used for function names causes conflicts in the C
language. These conflicts must be resolved using the alternative name specified in brackets after the function definition.

Include Files

The relevant include files containing the required definitions and declarations are specified in the beginning of the generic
and convenience interface sections. In general there is one include file for each chapter in the manual. If only the basic
L4 data types are needed they can be included using <l4/types.h>.

ABOUT THIS MANUAL xi

Revision History

Revision 1

Intial revision.

Revision 2

– Clarified the specification of the kernel-interface page and kernel configuration page magic.

– UntypedWords and StringItems Acceptor constants collided with function UntypedWords(MsgTag) and Strin-
gItems(MsgTag) function declaration. Renamed to UntypedWordsAcceptor and StringItemsAcceptor.

– Changed kernel ids for L4Ka kernels.

– Fixed return types for operators on the Time type.

– Changed wrx access rights in fpages to rwx. Also changed WRX reference bits in fpages returned from UNMAP
system call to RWX .

– Renamed Put functions operating on MsgBuffer to Append.

– Address space deletion is now performed by deleting the last thread of an AS. This makes creation and deletion
symmetrical (via ThreadControl). Before, all threads but the last were deleted by ThreadControl, and the last by
SpaceControl.

– Added functions for creating ThreadIDs and for retrieving version and thread numbers from them. Fixed size of
MyLocalId and MyGlobalId TCRs.

– Specified that the first three thread version numbers available for user threads are dedicated to σ0, σ1, and root task
respectively.

– Changed the encoding of µ in the magic field of the KIP back to 0xE6 to be compatible with previous versions of the
kernel.

– Changed memory descriptors (e.g., dedicated memory) in the kernel-interface page and kernel configuration page to
use an array of typed descriptors instead of a static number of predefined ones.

– Added an appendix for the PowerPC interface.

– Added Niltag MsgTag constant.

– Decreased size of MsgBuffer structure to 32.

– Changed single Fpage& argument of Unmap() and Flush() into pass by value.

– Changed the ia32 kernel feature string “small” to “smallspaces”.

– Added appendix for the ia64 interface.

– Changed the ia32 IPC and LIPC ABI to be better suitable for common hardware featuring sysenter/sysexit and gcc.

– Added ProcDesc convenience functions.

– Specified which include files to use for the various parts of the API.

– Allow privileged threads to access ia32 Model-Specific Registers.

– Changed the ia64 ABI for system-call links and the IPC and LIPC system-calls.

– The UTCB location of a new thread is now explicitly specified by a parameter to the THREADCONTROL system-call.

– Added C versions of conflicting function names.

xii ABOUT THIS MANUAL

– Added a number of convenience functions for fpages, map items, grant items, string items and kernel interface page
fields.

– Added description of the send base in map and grant items.

– Changed subversion numbering for Version X.2 and Version 4 API.

– Renamed the XferTimeout TCR to XferTimeouts and split into separate send and receive timeouts.

– Added two thread specific words to each the architecture specific TCR sections. These words are free to be used by,
e.g., IDL compilers.

– Changed name of L4Ka kernels to the official name. Added L4Ka::Strawberry.

– Added appendices for Alpha and MIPS64.

Revision 3

– Clarified description of the supplier field in the kernel-interface page.

– Added NumMemoryDescriptors() convenience function.

– Clarified the return value of MemoryDescType() function.

– Fixed faulty specification of Wait Timeout() and ReplyWait Timeout().

– Added a new h-flag to control parameter in the EXCHANGEREGISTERS system-call. The h-flag controls whether the
resume/halt flag should be ignored or not.

– Changed parameter type of TimePeriod() from “int” to “Word64”.

– Fixed typo in specification of the MsgTag input/output IPC parameter.

– Added comment to IPC system-call about the read-once semantics of message registers.

– Added member name “raw” to all L4 types declared as structs.

– Renamed start() and stop() functions to Start() and Stop().

– Describe semantics of undefined UTCB memory regions.

– The first 10 message registers on PowerPC are now defined as backed by physical registers.

– The first 9 message registers on Alpha are now defined as backed by physical registers.

– Fixed MR 0 register allocation for IA32 syscalls and adapted syscalls accordingly.

Revision 4

– Added appendix for AMD64.

– Changed MIPS64 IPC ABI to include 9 message registers.

– Added SYSTEMCLOCK syscall for MIPS64.

– Clarified the fact that an interrupt thread may be the originator thread during IPC propagation.

– Added appendix for SPARC v9.

– The high field of memory descriptors now specifies the last addressable byte in the memory region.

ABOUT THIS MANUAL xiii

Revision 5

– The ErrorCode TCR is now a generic placeholder for error descriptions of failed system-calls.

– MEMORYCONTROL now returns a result parameter.

– Defined error codes for various system-calls (EXCHANGEREGISTERS, THREADCONTROL, SCHEDULE, SPACECON-
TROL, PROCESSORCONTROL and MEMORYCONTROL).

– Defined convenience definitons for error code values.

– Changed the IA32 SYSTEMCLOCK ABI to clobber the EDI register.

– Specify that the KIP area and the UTCB area of an address space must not overlap.

– For the PowerPC system call trap exception IPC, use a message label of -5, and preserve register LR.

– The EXCHANGEREGISTERS system-call can no longer activate an inactive thread.

– The Fpage argument to Set Rights() is now passed by reference.

– Fixed inconsistencies about the number of available buffer registers.

– Renamed Void to void, Char to char, and bool to Bool.

– The Start() convenience function now aborts any ongoing IPC operations.

– The Unmap() and Flush() convenience functions operating on a single fpage now deliver the status bits of the modified
fpage.

– MIPS64 now uses the k0 ($26) register for holding the UTCB address.

– Added two new memory types for MEMORYCONTROL on MIPS64.

– Added appendix for generic BootInfo.

– Make it clear that it is not possible to activate a thread in an address space which has not been properly configured
with SPACECONTROL.

– Added appendix for ARM.

– If using a 64 bit kernel, define second 32 bit word of kernel interface page to 0.

– Changed the ABI for the PowerPC system calls UNMAP and MEMORYCONTROL .

Revision 6

– Removed control parameter from PROCESSORCONTROL system call binding and from the PROCESSORCONTROL
Alpha system call ABI.

– Added delivery parameter to EXCHANGEREGISTERS controlling whether the syscall should deliver the thread’s old
values or not. Targeted at MP systems.

– Added operators for adding and subtracting two Clock values.

– Specified that σ0 also understands the pagefault protocol, and that anonymous σ0 requests will only regard conven-
tional memory as available.

– Added ARM general exception IPC message format.

– Changes MIPS64 syscall exception IPC message format to closer match the general exception message format.

– Clarified order of IPC send and receive.

– Changed the AMD64 and IA32 specific IO port mapping interface. The kernel now uses a custom pagefault label to
propagate IO pagefaults to the pager.

– Updated valid encodings for API Version, Kernel Id, and Supplier in the kernel-interface page.

– Make it clear on which processor a new thread starts executing.

xiv ABOUT THIS MANUAL

– ProcessorNo now returns a word rather than int.

– Added functions for reading IO fpages. Fixed include path for using IO fpages.

– Define that the SCHEDULE system call is also allowed if the calling thread resides in same address space as the
destination thread.

– Redefine values for IA32 memory attributes to better correspond with the architecture’s default Page Attribute Table
(PAT) values.

Chapter 1

Basic Kernel Interface

2 KERNEL INTERFACE PAGE

1.1 Kernel Interface Page [Data Structure]

The kernel-interface page contains API and kernel version data, system descriptors including memory descriptors, and
system-call links. The remainder of the page is undefined.

The page is a microkernel object. It is directly mapped through the microkernel into each address space upon address-
space creation. It is not mapped by a pager, can not be mapped or granted to another address space and can not be
unmapped. The creator of a new address space can specify the address where the kernel interface page has to be mapped.
This address will remain constant through the lifetime of that address space. Any thread can obtain the address of the
kernel interface page through the KERNELINTERFACE system call (see page 7).

L4 version parts

Supplier KernelVer KernelGenDate KernelId KernDescPtr

InternalFreq ExternalFreq ProcDescPtr

MemoryDesc MemDescPtr

∼ SCHEDULE SC THREADSWITCH SC SYSTEMCLOCK SC +F0 / +1E0

EXCHANGEREGISTERS SC UNMAP SC LIPC SC IPC SC +E0 / +1C0

MEMORYCONTROL pSC PROCESSORCONTROL pSC THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A0

ProcessorInfo PageInfo ThreadInfo ClockInfo +C0 / +180

ProcDescPtr BootInfo ∼ +B0 / +160

KipAreaInfo UtcbInfo ∼ +A0 / +140

∼ +90 / +120

∼ +80 / +100

∼ +70 / +E0

∼ +60 / +C0

∼ MemoryInfo ∼ +50 / +A0

∼ +40 / +80

∼ +30 / +60

∼ +20 / +40

∼ +10 / +20

KernDescPtr API Flags API Version 0(0/32) ’K’ 230 ’4’ ’L’ +0

+C / +18 +8 / +10 +4 / +8 +0

KERNEL INTERFACE PAGE 3

Note that this kernel interface page is basically upward compatible to the kernel info page of versions 2 and X.0. The
magic byte string “L4µK” at the beginning of the object identifies the kernel interface page.

Version/id number convention: Version/subversion/subsubversion numbers and id/subid numbers with the most signif-
icant bit 0 denote official versions/ids and are globally unique through all suppliers. Version/id numbers that have the
most significant bit set to 1 denote experimental versions/ids and may be unique only in the context of a supplier.

API Description

API Version version (8) subversion (8) ∼ (16)

version subversion
0x02 Version 2
0x83 0x80 Experimental Version X.0
0x83 0x81 Experimental Version X.1
0x84 rev Experimental Version X.2 (Revision rev)
0x85 Dresden L4.Sec
0x86 rev NICTA N1 (Revision rev)
0x04 rev Version 4 (Revision rev)

API Flags
∼ (28/60) ww ee

ee = 00 : little endian,
= 01 : big endian.

ww = 00 : 32-bit API,
= 01 : 64-bit API.

Note that this field can not be used directly to differentiate between little endian and big endian
mode since the ee field resides in different bytes for both modes. Furthermore, the offset address
of the API Flags is different for 32-bit and 64-bit modes. In summary, a direct inspection of the
kernel interface page is not sufficient to securely differentiate between 32/64-bit modes and
little/big endian modes.
Secure mode detection is enabled through the KERNELINTERFACE system call (see page 7). It
delivers the API Flags in a register.

System Description

ProcessorInfo
s (4) ∼ (12/44) processors− 1 (16)

s The size of the area occupied by a single processor description is 2s. Location of description
fields for the first processor is denoted by ProcDescPtr. Description fields for subsequent pro-
cessors are located directly following the previous one.

processors

Number of available system processors.

PageInfo
page-size mask (22/54) ∼ (7) r w x

page-size mask
If bit k− 10 of the page-size mask field (bit k of the entire word) is set to 1 hardware and kernel
support pages of size 2k. If the bit is 0 hardware and/or kernel do not support pages of size 2k.
Note that fpages of size 2k can be used, even if 2k is no supported hardware page size. Infor-
mation about supported hardware page sizes is only a performance hint.

4 KERNEL INTERFACE PAGE

r w x Identifies the supported access rights (read, write, execute) that can be set independently of
other access rights. A 1-bit signals that the right can be set and reset on a mapped page. For
rwx = 010, only write permission could be controlled orthogonally. The processor would
implicitly permit read and execute access on any mapped page. For rwx = 111, all three rights
could be set and reset independently.

ThreadInfo
UserBase (12) SystemBase (12) t (8)

t Number of valid thread-number bits. The thread number field may be larger but only bits
0 . . . t− 1 are significant for this kernel. Higher bits must all be 0.

UserBase
Lowest thread number available for user threads (see page 14). The first three thread numbers
will be used for the initial thread of σ0, σ1, and root task respectively (see page 86). The version
numbers (see page 14) for these initial threads will equal to one.

SystemBase
Lowest thread number used for system threads (see page 14). Thread numbers below this value
denote hardware interrupts.

ClockInfo
SchedulePrecision (16) ReadPrecision (16)

ReadPrecision
Specifies the minimal time difference 6= 0 that can be detected by reading the system clock
through the SYSTEMCLOCK system call. Basically, this is the precision of the system clock
when reading it.

SchedulePrecision
Specifies the maximal jitter (±) for a scheduled thread activation based on a wakeup time (pro-
vided that no thread of higher or equal priority is active and timer interrupts are enabled).
Precisions are given as time periods (see page 28).

UtcbInfo
∼ (10/42) s (6) a (6) m (10)

s The minimal area size for an address space’s UTCB area is 2s. The size of the UTCB area limits
the total number of threads k to 2amk ≤ 2s.

m UTCB size multiplier.

a The UTCB location must be aligned to 2a. The total size required for one UTCB is 2am.

KipAreaInfo
∼ (26/58) s (6)

s The size of the kernel interface page area is 2s.

BootInfo Prior to kernel initialization a boot loader can write an arbitrary value into the BootInfo field of
the kernel configuration page (see page 86). Post-initialization code, e.g., a root server can later
read the field from the kernel interface page. Its value is neither changed nor interpreted by the
kernel. This is a generic method for passing system information across kernel initialization.

Processor Description

ProcDescPtr Points to an array containing a description for each system processor. The ProcessorInfo field
contains the dimension of the array. ProcDescPtr is given as an address relative to the kernel
interface page’s base address.

ExternalFreq External Bus frequency in kHz.

KERNEL INTERFACE PAGE 5

InternalFreq Internal processor frequency in kHz.

Kernel Description

KernDescPtr Points to a region that contains 4 kernel-version words (see below) followed by a number of
0-terminated plaintext strings. The first plaintext string identifies the current kernel followed by
further optional kernel-specific versioning information. The remaining plaintext strings identify
architecture dependent kernel features (see Appendix A.3). A zero length string (i.e., a string
containing only a 0-character) terminates the list of feature descriptions.
KernelDescPtr is given as an address relative to the kernel interface page’s base address.

KernelId id (8) subid (8) ∼ (16)

Can be used to identify the microkernel.

id subid kernel supplier
0 1 L4/486 GMD
0 2 L4/Pentium IBM
0 3 L4/x86 UKa
1 1 L4/Mips UNSW
2 1 L4/Alpha TUD, UNSW
3 1 Fiasco TUD
4 1 L4Ka::Hazelnut UKa
4 2 L4Ka::Pistachio UKa, UNSW, NICTA
4 3 L4Ka::Strawberry UKa
5 1 NICTA::Pistachio-embedded NICTA

KernelGenDate ∼ (16/48) year-2000 (7) month (4) day (5)

Kernel generation date.

KernelVer ver (8) subver (8) subsubver (16)

Can be used to identify the microkernel version. Note that this kernel version is not necessarily
related to the API version.

Supplier The four least significant bytes of the supplier field specify a character string identifying the
kernel supplier:

“GMD ” GMD
“IBM ” IBM Research
“UNSW” University of New South Wales, Sydney
“TUD ” Technische Universität Dresden
“UKa ” Universität Karlsruhe (TH)
“NICT ” National ICT Australia (NICTA)

System-Call Links

SC Link for normal system call.

pSC Link for privileged system call, i.e., a system call that can only be performed by a privileged
thread.

The system-call links specify how the application can invoke system-calls for the current micro-
kernel. The interpretation of the system-call links is ABI specific, but will typically be addresses
relative to the kernel interface page’s base address where kernel provided system-call stubs are
located.

6 KERNEL INTERFACE PAGE

Memory Description

MemoryInfo
MemDescPtr (16/32) n (16/32)

MemDescP tr
Location of first memory descriptor (as an offset relative to the kernel-interface page’s base
address). Subsequent memory descriptors are located directly following the first one. For mem-
ory descriptors that specify overlapping memory regions, later descriptors take precedence over
earlier ones.

n Number of memory descriptors.

MemoryDesc
high/210

(22/54) ∼ (10) +4 / +8

low/210
(22/54) v ∼ t (4) type (4) +0

high Address of last byte in memory region. The ten least significant address bits are all hardwired
to 1.

low Address of first byte in memory region. The ten least significant address bits are all hardwired
to 0.

v Indicates whether memory descriptor refers to physical memory (v = 0) or virtual memory
(v = 1).

type Identifies the type of the memory descriptor.

Type Description
0x0 Undefined
0x1 Conventional memory
0x2 Reserved memory (i.e., reserved by kernel)
0x3 Dedicated memory (i.e., memory not available to user)
0x4 Shared memory (i.e., available to all users)
0xE Defined by boot loader
0xF Architecture dependent

t, type = 0xE
The type of the memory descriptor is dependent on the bootloader. The t field specifies the exact
semantics. Refer to boot loader specification for more info.

t, type = 0xF
The type of the memory descriptor is architecture dependent. The t field specifies the exact
semantics. Refer to architecture specific part for more info (see page 117).

t, type 6= 0xE, type 6= 0xF
The type of the memory descriptor is solely defined by the type field. The content of the t field
is undefined.

KERNELINTERFACE 7

1.2 KERNELINTERFACE [Slow Systemcall]

−→ void* kernel interface page
Word API Version
Word API Flags
Word KernelId

Delivers base address of the kernel interface page, API version, and API flags. The latter two values are copies of the
corresponding fields in the kernel interface page. The API information is delivered in registers through this system call (a)
to enable unrestricted structural changes of the kernel interface page in future versions, and (b) to enable secure detection
of the kernel’s endian mode (little/big) and word width (32/64).

The structure of the kernel interface page is described on page 2. The page is a microkernel object. It is directly
mapped through the microkernel into each address space upon address-space creation. It is not mapped by a pager, can
not be mapped or granted to another address space and can not be unmapped. The creator of a new address space can
specify the address where the kernel interface page has to be mapped. This address will remain constant through the
lifetime of that address space.

Any thread can determine the address of the kernel interface page through this system call. Since the system call may
be slow it is highly recommended to store the address in a static variable for further use.

It is also possible to use a unique address for the kernel interface page in all address spaces of a (sub)system. Then,
the kernel interface page can be accessed by fixed absolute addresses without using the current system call.

Besides other things, the page describes the current API, ABI, and microkernel version so that a server or an application
can find out whether and how it can run on the current microkernel. Since the kernel interface page also contains API-
and ABI-specific data for most other system calls the page’s base address is typically required before any other system
call can be used.

To enable version detection independently of the API and ABI, the current system call is guaranteed to work in all L4
versions. The systemcall code will never change and will be the same on compatible processors. (If a processor is upward
compatible to multiple incompatible processors the kernel should offer multiple systemcall codes for this function.)

Output Parameters

kernel interface page

Ver X.1 and above base address (32/64)

Kernel interface page address, always page aligned. 0 is no valid address.

Ver X.0 and below 0 (32/64)

Older versions (2, X.0, etc.) do not include the kernel interface page as a kernel mapped page.
No address is delivered.

API Version version (8) subversion (8) ∼ (16)

see page 3, “Kernel Interface Page”

API Flags
∼ (28/60) ww ee

see page 3, “Kernel Interface Page”

8 KERNELINTERFACE

KernelId id (8) subid (8) ∼ (16)

see page 5, “Kernel Interface Page”

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/kip.h>

void * KernelInterface (Word& ApiVersion, ApiFlags, KernelId)

Convenience Programming Interface

Derived Functions:

#include <l4/kip.h>

struct MEMORYDESC {Word raw [2] }

struct PROCDESC {Word raw [4] }

void* KernelInterface () [GetKernelInterface]
Delivers a pointer to the kernel interface page.

Word ApiVersion ()

Word ApiFlags ()

Word KernelId ()

void KernelGenDate (void* KernelInterface, Word& year, month, day)

Word KernelVersion (void* KernelInterface)

Word KernelSupplier (void* KernelInterface)
Delivers the API Version/API Flags/Kernel Id/kernel generation date/kernel version/kernel sup-
plier.

Word NumProcessors (void* KernelInterface)

Word NumMemoryDescriptors (void* KernelInterface)
Delivers number of processors in the system/number of memory descriptors in the kernel-
interface page.

Word PageSizeMask (void* KernelInterface)

Word PageRights (void* KernelInterface)
Delivers supported page sizes/page rights for the current kernel/hardware architecture.

Word ThreadIdBits (void* KernelInterface)

Word ThreadIdSystemBase (void* KernelInterface)

KERNELINTERFACE 9

Word ThreadIdUserBase (void* KernelInterface)
Delivers number of valid bits for thread numbers/lowest thread number for system threads/lowest
thread number for user threads.

Word ReadPrecision (void* KernelInterface)

Word SchedulePrecision (void* KernelInterface)
Delivers the SYSTEMCLOCK read precision/maximal jitter for wakeups (both in µs).

Word UtcbAreaSizeLog2 (void* KernelInterface)

Word UtcbAlignmentLog2 (void* KernelInterface)

Word UtcbSize (void* KernelInterface)
Delivers required minimum size of UTCB area/alignment requirement for UTCBs/size of a sin-
gle UTCB.

Word KipAreaSizeLog2 (void* KernelInterface)
Delivers size of kernel interface page area.

Word BootInfo (void* KernelInterface)
Delivers the contents of the boot info field.

char* KernelVersionString (void* KernelInterface)
Delivers the kernel version string.

char* Feature (void* KernelInterface, Word num)
Delivers the numth kernel feature string, or a null pointer if num exceeds the number of avail-
able feature strings.

MemoryDesc* MemoryDesc (void* KernelInterface, Word num)
Delivers the numth memory descriptor, or a null pointer if num exceeds the number of available
descriptors.

ProcDesc* ProcDesc (void* KernelInterface, Word num)
Delivers the numth processor descriptor, or a null pointer if num exceeds the number of pro-
cessors of the system (see ProcessorInfo).

Support Functions:

#include <l4/kip.h>

Word UndefinedMemoryType

Word ConventionalMemoryType

Word ReservedMemoryType

Word DedicatedMemoryType

Word SharedMemoryType

Word BootLoaderSpecificMemoryType

Word ArchitectureSpecificMemoryType

Bool IsVirtual (MemoryDesc& m) [IsMemoryDescVirtual]
Delivers true if memory descriptor specifies a virtual memory region.

Word Type (MemoryDesc& m) [MemoryDescType]

Word Low (MemoryDesc& m) [MemoryDescLow]

Word High (MemoryDesc& m) [MemoryDescHigh]
Delivers type (t∗16 + type), low limit, and high limit of memory region.

10 KERNELINTERFACE

Word ExternalFreq (ProcDesc& p) [ProcDescExternalFreq]

Word InternalFreq (ProcDesc& p) [ProcDescInternalFreq]
Delivers external frequency/internal frequency of processor.

VIRTUAL REGISTERS 11

1.3 Virtual Registers [Virtual Registers]

Virtual registers are implemented by the microkernel. They offer a fast interface to exchange data between the microkernel
and user threads. Virtual registers are registers in the sense that they are static per-thread objects. Dependent on the
specific processor type, they can be mapped to hardware registers or to memory locations. Mixtures, some virtual registers
to hardware registers, some to memory are also possible. The ABI for virtual-register access depends on the specific
processor type and on the virtual-register type, see Appendices A.1, B.1 and C.1 for specific hardware details.

There are three classes of virtual registers:

• Thread Control Registers (TCRs), see page 16

• Message Registers (MRs), see page 48

• Buffer Registers (BRs), see page 59

Loading illegal values into virtual registers, overwriting read-only virtual registers, or accessing virtual registers of other
threads in the same address space (which may be physically possible if some are mapped to memory locations) is illegal
and can have undefined effects on all threads of the current address space. However, since virtual registers can not
be accessed across address spaces, they are safe from the kernel’s point of view: Illegal accesses can like any other
programming bug only compromise the originator’s address space.

Remark: In general, virtual registers can only be addressed directly, not indirectly through pointers.
The generic API therefore offers no operations for indirect virtual-register access. However,
processor-specific code generators might use indirect access techniques if the ABI permits it.

Generic Programming Interface

#include <l4/message.h>

void StoreMR (int i, Word& w)

void LoadMR (int i, Word w)
Delivers/sets MR i.

void StoreMRs (int i, k, Word& [k] w)

void LoadMRs (int i, k, Word& [k] w)
Stores/loads MR i...i+k−1 to/from memory.

void StoreBR (int i, Word& w)

void LoadBR (int i, Word w)
Delivers/sets the value of BR i.

void StoreBRs (int i, k, Word& [k])

void LoadBRs (int i, k, Word& [k])
Stores/loads BR i...i+k−1 to/from memory.

12 VIRTUAL REGISTERS

Chapter 2

Threads

14 THREADID

2.1 ThreadId [Data Type]

Thread IDs identify threads and hardware interrupts. A thread ID can be global or local. Global thread IDs are unique
through the entire system. They identify threads independently of the address space in which they are used. Local thread
IDs exist per address space; the scope of a thread’s local ID is only the thread’s own address space. In different address
spaces, the same local thread ID may identify different and unrelated threads.

Note that any thread has a global and a local thread ID. Both global and local thread IDs are encoded in a single word.

Global Thread ID

A global thread ID consists of a word, where 18 bits (32-bit processor) or 32 bits (64-bit processor) determine the thread
number and 14 bits (32-bit processor) or 32 bits (64-bit processor) are available for a version number. At least one of the
lowermost 6 version bits must be 1 to differentiate a global from a local thread ID.

User-thread numbers can be freely allocated within the interval [UserBase , 2t), where t denotes the upper limit of
thread IDs. The thread-number interval [SystemBase , UserBase) is reserved for L4-internal threads. Hardware interrupts
are regarded as hardware-implemented threads. Consequently, they are identified by thread IDs. Their corresponding
thread numbers are within the interval [0 , SystemBase). The values SystemBase, UserBase, and t are published in the
kernel interface page (see page 4).

global thread ID
thread no (18/32) version(14/32) 6= 0 (mod 64)

global interrupt ID
intr no (18/32) 1 (14/32)

Global thread IDs have a version field whose content can be freely set by those threads that can create and delete threads.
However, the lowermost 6 bits of the version must not all be 0, i.e. v mod 64 6= 0 must hold for every version v. For
hardware interrupts, the version field is always 1.

The microkernel checks version fields whenever a thread is accessed through its global thread ID. However, the se-
mantics of the version field are not defined by the microkernel. OS personalities are free to use this field for any purpose.
For example, they may use it to make thread IDs unique in time.

Local Thread ID

Local thread IDs identify threads within the same address space. They are identified by the 6 lowermost bits being 0.

local thread ID local id/64 (26/58) 0 0 0 0 0 0

Special Thread IDs

Special IDs exist for nilthread and two wild cards. The thread ID anythread matches with any given thread ID, including
all interrupt IDs. The ID anylocalthread matches all threads that reside in the same address space.

nilthread 0 (32/64)

anythread
−1 (32/64)

anylocalthread
−1 (26/58) 0 0 0 0 0 0

THREADID 15

Generic Programming Interface

#include <l4/thread.h>

struct THREADID {Word raw }

ThreadId nilthread

ThreadId anythread

ThreadId anylocalthread

ThreadId GlobalId (Word threadno, version)
Delivers a thread ID with indicated thread and version number.

Word Version (ThreadId t)

Word ThreadNo (ThreadId t)
Delivers version/thread number of indicated global thread ID.

Convenience Programming Interface

#include <l4/thread.h>

Bool == (ThreadId l, r) [IsThreadEqual]

Bool != (ThreadId l, r) [IsThreadNotEqual]
Check if thread IDs match or differ. The result of comparing a local ID with a global ID will
always indicate a mismatch, even if the IDs refer to the same thread.

Bool SameThreads (ThreadId l, r)
{ GlobalId (l) == GlobalId (r) }

Check if thread IDs refer to the same thread. Also works if one ID is local and the other is
global.

Bool IsNilThread (ThreadId t)
{ t == nilthread }

Bool IsLocalId (ThreadId t)

Bool IsGlobalId (ThreadId t)
Check if thread ID is a local/global one.

ThreadId LocalId (ThreadId t) [LocalIdOf]

ThreadId GlobalId (ThreadId t) [GlobalIdOf]
Delivers the local/global ID of the specified local thread. Specifying a non-local thread delivers
nilthread (see EXCHANGEREGISTERS, page 18).

ThreadId MyLocalId ()

ThreadId MyGlobalId ()
Delivers the local/global ID of the currently running thread (see TCRs, page 16).

ThreadId Myself ()
{MyGlobalId () }

16 THREAD CONTROL REGISTERS (TCRS)

2.2 Thread Control Registers (TCRs) [Virtual Registers]

TCRs are a fast mechanism to exchange relatively static control information between user thread and microkernel. TCRs
are static non-transient per-thread registers.

VirtualSender/ActualSender (32/64) R/W see IPC

IntendedReceiver (32/64) R-only see IPC

XferTimeouts (32/64) R/W see IPC

ErrorCode (32/64) R-only see system-calls

Preempt Flags (8) R/W see Scheduling

Cop Flags (8) W -only see Miscellaneous

ExceptionHandler (32/64) R/W see Miscellaneous

Pager (32/64) R/W see Protocols

UserDefinedHandle (32/64) R/W see Threads

ProcessorNo (32/64) R-only see Miscellaneous

MyLocalId (32/64) R-only see Threads, IPC

MyGlobalId (32/64) R-only see Threads, IPC

MyGlobalId Global ID of the thread.

MyLocalId Local ID of the thread.

ProcessorNo The processor number on which the thread currently executes.

UserDefinedHandle
This field can be freely set and read by user threads. It can, e.g., be used for storing a thread
number, a pointer to an additional user thread control block, etc.

THREAD CONTROL REGISTERS (TCRS) 17

Generic Programming Interface

The listed generic functions permit user code to access TCRs independently of the processor-specific TCR model. All
functions are user-level functions; the microkernel is not involved.

#include <l4/thread.h>

ThreadId MyLocalId ()

ThreadId MyGlobalId ()
Delivers the local/global ID of the currently running thread (see TCRs, page 16).

ThreadId Myself ()
{MyGlobalId () }

Word ProcessorNo ()
Delivers the processor number the current thread is running on. Delivered value is a valid index
into the processor description array (see Kernel Interface Page, page 4).

Word UserDefinedHandle ()

void Set UserDefinedHandle (Word NewValue)
Delivers/sets the user defined handle of the currently running thread.

ThreadId Pager ()

void Set Pager (ThreadId NewPager)
Delivers/sets the pager for the currently running thread.

ThreadId ExceptionHandler ()

void Set ExceptionHandler (ThreadId NewHandler)
Delivers/sets the exception handler for the currently running thread.

void Set CopFlag (Word n)

void Clr CopFlag (Word n)
Sets/clears coprocessor flag cn.

Word ErrorCode ()
Delivers the error code of the last system-call.

Word XferTimeouts ()

void Set XferTimeouts (Word NewValue)
Delivers/sets the transfer timeouts for the currently running thread (see IPC, page 63).

ThreadId IntendedReceiver ()
Delivers the intended receiver of last received IPC (see IPC, page 64).

ThreadId ActualSender ()
Delivers the actual sender of the last propagated IPC (see IPC, page 63).

void Set VirtualSender (ThreadId t)
Sets the virtual sender for the next deceiving IPC (see IPC, page 63).

Code generators of IDL and other compilers are not restricted to the generic interface. They can use any processor-specific
methods and optimizations to access TCRs.

18 EXCHANGEREGISTERS

2.3 EXCHANGEREGISTERS [Systemcall]

−→ThreadId dest ThreadId result
Word control Word control
Word SP Word SP
Word IP Word IP
Word FLAGS Word FLAGS
ThreadId pager ThreadId pager
Word UserDefinedHandle Word UserDefinedHandle

Exchanges or reads a thread’s FLAGS, SP, and IP hardware registers as well as pager and UserDefinedHandle TCRs.
Furthermore, thread execution can be suspended or resumed. The destination thread must be an active thread (see page 22)
residing in the invoker’s address space.

Any IP, SP, or FLAGS modification changes the corresponding user-level registers of the addressed thread. In general,
ongoing kernel activities are not influenced. However, a currently active IPC operation can be canceled or aborted. For
details see the SR-bit specification below.

Modifications of the pager TCR and the UserDefinedHandle TCR become immediately effective, whether the desti-
nation thread executes in user mode or in kernel mode.

Input Parameters

dest Thread ID of the addressed thread. This may be a local or a global ID. However, the addressed
thread must reside in the current address space. Using a local thread ID might be substantially
faster in some implementations.

control 0 (22/54) d h p u f i s S R H

h p u f i s The s-flag refers to the SP register, i to IP, f to FLAGS, u to the UserDefinedHandle TCR, p to
the pager TCR, and h to the H-flag. If a flag is set to 1, the register/state is overwritten by the
corresponding input parameter. Otherwise, the corresponding input parameter is ignored and the
register/state is not modified.

S R Controls whether the addressed thread’s ongoing IPC opereration should be canceled/aborted
through the system call or not.

S = 0 An IPC operation of the addressed thread that is currently waiting to send a message or is sending
a message will continue as usual. SP, IP or FLAGS modifications are delayed until the IPC
operation terminates.

S = 1 An IPC operation of the addressed thread that is currently waiting to send a message will be
canceled. An IPC operation that is currently sending a message will be aborted.

R = 0 An IPC operation of the addressed thread that is currently waiting to receive a message or is
receiving a message will continue as usual. SP, IP or FLAGS modifications are delayed until the
IPC operation terminates.

R = 1 An IPC operation of the addressed thread that is currently waiting to receive a message will be
canceled. An IPC operation that is currently receiving a message will be aborted.

H Halts/resumes the thread if h = 1. Ignored for h = 0.

H = 0 No effect if the thread was not halted. Otherwise, thread execution is resumed.

H = 1 User-level thread execution is halted. Note that ongoing IPCs and other kernel operations are
not affected by H . (See SR for also aborting active IPC.)

EXCHANGEREGISTERS 19

d If d = 1 the result parameters (IP, SP, FLAGS, UserDefinedHandle, pager, control) are delivered.
If d = 0 the return values are undefined.

SP The current user-level stack pointer is set to SP if s = 1. Ignored for s = 0.

IP The current user-level instruction pointer is set to IP if i = 1. Ignored for i = 0.

FLAGS Sets the user-level processor flags of the thread if f = 1. Ignored for f = 0. The semantics of
the FLAGS word depends on the processor type.

UserDefinedHandle
Sets the thread’s UserDefinedHandle TCR if u = 1. Ignored for u = 0.

pager Sets the thread’s pager TCR if p = 1. Ignored for p = 0.

Output Parameters

result 6= nilthread, input parameter dest was a local thread ID
global thread ID of the addressed thread. EXCHANGEREGISTERS succeeded.

result 6= nilthread, input parameter dest was a global thread ID
local thread ID of the addressed thread. EXCHANGEREGISTERS succeeded.

result = nilthread Operation failed. The ErrorCode TCR indicates the reason for the failure.

ErrorCode [TCR] Set if result = nilthread. Undefined if result 6= nilthread.

= 2 Invalid thread. The dest parameter specified an invalid thread ID, an inactive thread, or a thread
within a different address space.

control 0 (29/61) S R H

The control parameter is only valid if d = 1 and undefined otherwise.

H Reports whether the addressed thread was halted (H = 1) or not (H = 0) when EXCHANGE-
REGISTERS was invoked. Note that this output control bit is independent of the input parameter
control.

SR Reports whether the addressed thread was within an IPC operation when EXCHANGEREGIS-
TERS was invoked. A value of 0 reports that the addressed thread was not within a send phase
(S = 0) or not within a receive phase (R = 0), respectively. Note that these output control bits
are independent of the input parameter control.

R = 1 Operation was executed while the addressed thread was within the receive phase of an IPC
operation. Iff the input control word had R = 1 the IPC operation was canceled or aborted.

S = 1 Operation was executed while the addressed thread was within the send phase of an IPC opera-
tion. Iff the input control word had S = 1 the IPC operation was canceled or aborted.

20 EXCHANGEREGISTERS

SP Old user-level stack pointer of the thread, if d = 1 and undefined for d = 0.

IP Old user-level instruction pointer of the thread, if d = 1 and undefined for d = 0.

FLAGS Old user-level flags of the thread, if d = 1 and undefined for d = 0. The semantics of this word
is processor specific.

UserDefinedHandle
Old content of thread’s UserDefinedHandle TCR, if d = 1 and undefined for d = 0.

pager Old content of thread’s pager TCR, if d = 1 and undefined for d = 0.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/thread.h>

ThreadId ExchangeRegisters (ThreadId dest, Word control, sp, ip, flags, UserDefinedHandle, ThreadId pager,
Word& old control, old sp, old ip, old flags, old UserDefinedHandle, ThreadId& old pager)

Convenience Programming Interface

Derived Functions:

#include <l4/thread.h>

ThreadId GlobalId (ThreadId t) [GlobalIdOf]
{ if (IsLocalId (t)) ExchangeRegisters (t,0,–. . .) else t }

Delivers global ID of specified local thread. Specifying a non-local thread delivers nilthread.

ThreadId LocalId (ThreadId t) [LocalIdOf]
{ if (IsGlobalId (t)) ExchangeRegisters (t,0,–. . .) else t }

Delivers local ID of specified local thread. Specifying a non-local thread delivers nilthread.

Word UserDefinedHandle (ThreadId t) [UserDefinedHandleOf]

void Set UserDefinedHandle (ThreadId t, Word handle) [Set UserDefinedHandleOf]
Delivers/sets the user defined handle of specified local thread. Result of specifying a non-local
thread is undefined.

ThreadId Pager (ThreadId t) [PagerOf]

void Set Pager (ThreadId t, p) [Set PagerOf]
Delivers/sets the pager for specified local thread. Result of specifying a non-local thread is
undefined.

EXCHANGEREGISTERS 21

void Start (ThreadId t)

void Start (ThreadId t, Word sp, ip) [Start SpIp]

void Start (ThreadId t, Word sp, ip, flags) [Start SpIpFlags]
Resume execution of specified local thread (if halted). Abort any ongoing IPC operations. Op-
tionally modify stack pointer, instruction pointer, and processor flags according to function pa-
rameters. Result of specifying a non-local thread is undefined.

ThreadState Stop (ThreadId t)

ThreadState Stop (ThreadId t, Word& sp, ip, flags) [Stop SpIpFlags]
Halt execution of specified local thread and return its current thread state. Do not abort any on-
going IPC operation. Optionally return thread’s stack pointer, instruction pointer, and processor
flags in output parameters. Result of specifying a non-local thread is undefined.

ThreadState AbortReceive and stop (ThreadId t)

ThreadState AbortReceive and stop (ThreadId t, Word& sp, ip, flags) [AbortReceive and stop SpIpFlags]
As stop (), except any ongoing IPC receive operation is immediately aborted.

ThreadState AbortSend and stop (ThreadId t)

ThreadState AbortSend and stop (ThreadId t, Word& sp, ip, flags) [AbortSend and stop SpIpFlags]
As stop (), except any ongoing IPC send operation is immediately aborted.

ThreadState AbortIpc and stop (ThreadId t)

ThreadState AbortIpc and stop (ThreadId t, Word& sp, ip, flags) [AbortIpc and stop SpIpFlags]
As stop (), except any ongoing IPC send or receive operations are immediately aborted.

Support Functions:

#include <l4/thread.h>

struct THREADSTATE {Word raw }

Bool ThreadWasHalted (ThreadState s)

Bool ThreadWasSending (ThreadState s)

Bool ThreadWasReceiving (ThreadState s)

Bool ThreadWasIpcing (ThreadState s)
Query the thread state returned from one of the stop () functions.

Word ErrorCode ()

Word ErrInvalidThread

22 THREADCONTROL

2.4 THREADCONTROL [Privileged Systemcall]

−→ThreadId dest Word result
ThreadId SpaceSpecifier
ThreadId scheduler
ThreadId pager
void* UtcbLocation

A privileged thread, e.g., the root server, can delete and create threads through this function. It can also modify the global
thread ID (version field only) of an existing thread.

Threads can be created as active or inactive threads. Inactive threads do not execute but can be activated by active
threads that execute in the same address space.

An actively created thread starts immediately by executing a short receive operation from its pager. (An active thread
must have a pager.) The activeted thread expects a start message (MsgTag and two untyped words) from its pager.
Once it receives the start message, it takes the value of MR 1 as its new IP, the value of MR 2 as its new SP, and then
starts execution at user level with the received IP and SP. The new thread will execute on the same processor where the
activating ThreadControl was invoked

Interrupt threads are treated as normal threads. They are active at system startup and can not be deleted or migrated
into a different address space (i.e., SpaceSpecifier must be equal to the interrupt thread ID). When an interrupt occurs the
interrupt thread sends an IPC to its pager and waits for an empty end-of-interrupt acknowledgment message (MR 0=0).
Interrupt threads never raise pagefaults. To deactivate interrupt message delivery the pager is set to the interrupt thread’s
own ID.

Input Parameters

dest Addressed thread. Must be a global thread ID. Only the thread number is effectively used
to address the thread. If a thread with the specified thread number exists, its version bits are
overwritten by the version bits of dest id and any ongoing IPC operations are aborted. Otherwise,
the specified version bits are used for thread creations, i.e., a thread creation generates a thread
with ID dest.

SpaceSpecifier 6= nilthread, dest not existing
Creation. The space specifier specifies in which address space the thread will reside. Since
address space do not have own IDs, a thread ID is used as SpaceSpecifier. Its meaning is: the
new thread should execute in the same address space as the thread SpaceSpecifier.
The first thread in a new address space is created with SpaceSpecifier = dest. This operation
implicitly creates a new empty address space. Note that the new address space is created with an
empty UTCB and KIP area. The space creation must therefore be completed by a SPACECON-
TROL operation before the thread(s) can execute.

SpaceSpecifier 6= nilthread, dest exists
Modification Only. The addressed thread dest is neither deleted nor created. Modifications can
change the version bits of the thread ID, the associated scheduler, the pager, or the associated
address space, i.e., migrate the thread to a new address space.

SpaceSpecifier = nilthread, dest exists
Deletion. The addressed thread dest is deleted. Deleting the last thread of an address space
implicitly also deletes the address space.

scheduler 6= nilthread
Defines the scheduler thread that is permitted to schedule the addressed thread. Note that the
scheduler thread must exist when the addressed thread starts executing.

THREADCONTROL 23

scheduler = nilthread
The current scheduler association is not modified. This variant is illegal for a creating THREAD-
CONTROL operation.

pager 6= nilthread The pager of dest is set to the specified thread. If dest was inactive before, it is activated.

pager = nilthread The current pager association is not modified.
If used with a creating THREADCONTROL operation, dest is created as an inactive thread.

UtcbLocation 6= -1 The start address of the UTCB of the thread is set to UtcbLocation. Upon thread activation the
UTCB must fit entirely into the UTCB area of the configured address space, and must be prop-
erly aligned according to the UtcbInfo field of the kernel interface page. It is the application’s
responsibility to ensure that UTCBs of multiple threads do not overlap. Changing the UtcbLo-
cation of an already active thread is an illegal operation. Note that since a newly created space
has an empty UTCB area, it is not possible to activate a thread in an address space which has
not been properly configured with SPACECONTROL.

UtcbLocation = -1 The UTCB location is not modified.

UtcbInfo [KernelInterfacePage Field]
Permits to calculate the appropriate page size of the UTCB area fpage and specifies the size and
alignement of UTCBs. Note that the size restricts the total number of threads that can reside in
an address space.

∼ (10/42) s (6) a (6) m (10)

s The minimal area size for an address space’s UTCB area is 2s. The size of the UTCB area limits
the total number of threads k to 2amk ≤ 2s.

m UTCB size multiplier.

a The UTCB location must be aligned to 2a. The total size required for one UTCB is 2am.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set if result = 0. Undefined if result 6=0.

= 1 No privilege. Current thread does not have have privilege to perform the operation.

= 2 Unavailable thread. The dest parameter specified a kernel thread or an unavailable interrupt
thread.

= 3 Invalid space. The SpaceSpecifier parameter specified an invalid thread ID, or activation of a
thread in a not yet initialized space.

= 4 Invalid scheduler. The scheduler paramter specified an invalid thread ID, or was set to nilthrad
for a creating THREADCONTROL operation.

= 6 Invalid UTCB location. UtcbLocation lies outside of UTCB area, or attempt to change the
UtcbLocation for an already active thread.

24 THREADCONTROL

= 8 Out of memory. Kernel was not able to allocate the resources required to perform the operation.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/thread.h>

Word ThreadControl (ThreadId dest, SpaceSpecifier, Scheduler, Pager, void* UtcbLocation)

Convenience Programming Interface

Derived Functions:

#include <l4/thread.h>

Word AssociateInterrupt (ThreadId InterruptThread, InterruptHandler)
{ ThreadControl (InterruptThread, InterruptThread, nilthread, InterruptHandler, -1) }

Associate a handler thread with the specified interrupt source.

Word DeassociateInterrupt (ThreadId InterruptThread)
{ ThreadControl (InterruptThread, InterruptThread, nilthread, InterruptThread, -1) }

Remove association between the specified interrupt source and any potential handler thread.

Support Functions:

Word ErrorCode ()

Word ErrNoPrivilege

Word ErrInvalidThread

Word ErrInvalidSpace

Word ErrInvalidScheduler

Word ErrUtcbArea

Word ErrNoMem

Chapter 3

Scheduling

26 CLOCK

3.1 Clock [Data Type]

On both 32-bit and 64-bit processors, the system clock is represented as a 64-bit unsigned counter. The clock measures
time in 1 µs units, independent of the processor frequency. Although the clock base is undefined, it is guaranteed that the
counter will not overflow for at least 1,000 years.

Generic Programming Interface

#include <l4/schedule.h>

struct CLOCK {Word64 raw }

Convenience Programming Interface

#include <l4/schedule.h>

Clock + (Clock l, r) [ClockAdd]

Clock + (Clock l, Word64 r) [ClockAddUsec]

Clock + (Clock l, int r)

Clock − (Clock l, r) [ClockSub]

Clock − (Clock l, Word64 r) [ClockSubUsec]

Clock − (Clock l, int r)
Adds/subtracts a number of µs to/from a clock value. Delivers new clock value. Does not
modify the old clock value.

Bool < (Clock l, r) [IsClockEarlier]

Bool > (Clock l, r) [IsClockLater]

Bool <= (Clock l, r)

Bool >= (Clock l, r)

Bool == (Clock l, r) [IsClockEqual]

Bool != (Clock l, r) [IsClockNotEqual]
Compares two clock values.

SYSTEMCLOCK 27

3.2 SYSTEMCLOCK [Systemcall]

−→ Clock clock

Delivers the current system clock. Typically, the operation does not enter kernel mode.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/schedule.h>

Clock SystemClock ()

28 TIME

3.3 Time [Data Type]

Time values are used to specify send/receive timeouts for IPC operations (see page 62) and time quanta for scheduling
(see page 31). The unit for time periods as well as for time points is 1 µs. Clock ticks thus happen every µs.

Relative time values specify a time period. Time periods are encoded as un-normalized 16-bit floating-point numbers.
(Note that for easier handling the mantissa can have leading 0-bits.) The shortest non-zero time period that can be
specified is 1 µs, the longest finite period slightly exceeds 610 hours. Two special periods frequently used for timeouts
are 0 and∞, a never ending period. The values 0 and∞ have special encodings.

time period:
0 e (5) m (10) = 2em µs

0 (16) = ∞

0 1 (5) 0 (10) = 0

Absolute time values specify a point in time. They are only valid for a limited period, at maximum 67 seconds.

time point:
1 e (4) c m (10)

For a semantical description of time-point values, we use Clock to denote the current clock value in µs, x[i] to denote
bit i of x, and x[i,j] to denote the number consisting of bits i to j of x. Then, the time-point value (c, m, e) specifies the
point:

t =

 2e ·
(
m + Clock[63,e+9] · 2

10
)

if Clock[e+10] = c

2e ·
(
m + Clock[63,e+9] · 2

10 + 210
)

if Clock[e+10] 6= c

Absolute time values are thus the more precise the nearer in the future they are.
Absolute time values with maximal precision become invalid just after the clock has reached the specified point in

time. The validity interval can be expanded, but only by reducing the precision. In general, a time-point value (c, m, e)
that is constructed when the current clock value is C0 is valid from C0 up to

C0 + (210 − 1) · 2e

Therefore, a time-point value that should remain valid for 10 ms can have a precision of 10 µs whereas a value that
should remain valid for an entire second can only have a precision of 1 ms. In general, a precision of 0.1% of the required
validity interval can be achieved.

Generic Programming Interface

#include <l4/schedule.h>

struct TIME {Word16 raw }

Time Never

Time ZeroTime

Time TimePeriod (Word64 microseconds)

TIME 29

Time TimePoint (Clock at)

Convenience Programming Interface

#include <l4/schedule.h>

Time + (Time l, Word r) [TimeAddUsec]

Time += (Time l, Word r) [TimeAddUsecTo]

Time − (Time l, Word r) [TimeSubUsec]

Time −= (Time l, Word r) [TimeSubUsecFrom]
Adds/subtracts a number of microseconds to/from a time value.

Time + (Time l, r) [TimeAdd]

Time += (Time l, r) [TimeAddTo]

Time − (Time l, r) [TimeSub]

Time −= (Time l, r) [TimeSubFrom]
Adds/subtracts a time period to/from a time value. The result of adding/subtracting a time point
is undefined.

Bool > (Time l, r) [IsTimeLonger]

Bool >= (Time l, r)

Bool < (Time l, r) [IsTimeShorter]

Bool <= (Time l, r)

Bool == (Time l, r) [IsTimeEqual]

Bool != (Time l, r) [IsTimeNotEqual]
Compares two time values. The result of comparing a time period with a time point, or vice
versa, is undefined.

30 THREADSWITCH

3.4 THREADSWITCH [Systemcall]

−→ThreadId dest void

The invoking thread releases the processor (non-preemptively) so that another ready thread can be processed.

Input Parameter

dest = nilthread Processing switches to an undefined ready thread which is selected by the scheduler. (It might
be the invoking thread.) Since this is “ordinary” scheduling, the thread gets a new timeslice.

dest 6= nilthread If dest is ready, processing switches to this thread. In this “extraordinary” scheduling, the invok-
ing thread donates its remaining timeslice to the destination thread. (This one gets the donation
in addition to its ordinarily scheduled timeslices, if any.)
If the destination thread is not ready or resides on a different processor, the system call operates
as described for dest = nilthread.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/schedule.h>

void ThreadSwitch (ThreadId dest)

Convenience Programming Interface

Derived Functions:

#include <l4/schedule.h>

void Yield ()
{ ThreadSwitch (nilthread) }

Switch processing to a thread selected by the scheduler.

SCHEDULE 31

3.5 SCHEDULE [Systemcall]

−→ThreadId dest Word result
Word time control Word time control
Word processor control
Word prio
Word preemption control

The system call can be used by schedulers to define the priority, timeslice length, and other scheduling parameters of
threads. Furthermore, it delivers thread states.

The system call is only effective if the calling thread resides in the same address space as the destination thread’s
scheduler (see thread control, page 22).

Input Parameters

dest Destination thread ID. The destination thread must be existent (but can be inactive) and the
current thread must reside in the same address space as the destination thread’s scheduler (see
thread control). Otherwise, the destination thread is not affected.

All further input parameters have no effect if the supplied value is −1, ensuring that the corresponding internal thread
variable is not modified. The following description always refers to values 6= − 1.

time control ts len (16) total quantum (16)

ts len New timeslice length for the destination thread. The timeslice length is specified as a time
period (see page 28). Absolute time values and the value 0 are illegal. A timeslice length of
∞, however, can be specified. In that case, the thread never experiences a preemption due to
exhausted time slice. The specified value is always rounded up to the nearest possible timeslice
length. In particular, a time period of 1 µs results in the shortest possible timeslice.
Writing the timeslice length initializes the current quantum with the new length. After the quan-
tum is exhausted, the thread is preempted while the quantum is reloaded with ts len for the next
timeslice.

total quantum Defines the total quantum for the thread. Exhaustion of the total quantum results in an RPC to
the thread’s scheduler (i.e., the current thread). (Re)writing the total quantum re-initializes the
quantum, independent of the already consumed total quantum. The total quantum is specified
as a time period (see page 28). Absolute time values are illegal. A total quantum of∞ can be
specified.

prio
0 (24/56) prio (8)

New priority for destination thread. Must be less than or equal to current thread’s priority.

preemption control
0 (8/40) sensitive prio (8) maximum delay (16)

32 SCHEDULE

sensitive prio Preemptions by threads that run on a priority lower or equal to this sensitive prio will, (a) if
the delay-preemption flag is set, be delayed until the thread executes a thread switch (nilthread)
system call; and (b) if the signal-preemption flag is set, raise a preemption fault to the exception
handler.
No preemption delays or signaling will occur if preempted by a thread having a higher priority
than sensitive prio, regardless of the state of the delay-preemption and signal-preemption flags.

maximum delay The maximum time in µs a pending preemption can be delayed in the destination thread. The
value 0 effectively disables preemption delay.

processor control
0 (16/48) processor number (16)

processor number Specifies the processor number to which the thread should be migrated. The processor number
must be valid, i.e., smaller than the total number of processors (see kernel interface page at
page 3). Otherwise, the parameter is ignored. The first processor number is denoted as 0.

Output Parameters

result ∼ (24/56) tstate (8)

tstate = Thread state:

0 Error. The operation failed completely. The ErrorCode TCR indicates the reason for the failure.

1 Dead. The thread is unable to execute or does not exist.

2 Inactive. The thread is inactive/stopped.

3 Running. The thread is ready to execute at user-level.

4 Pending send. A user-invoked IPC send operation currently waits for the destination (recipient)
to become ready to receive.

5 Sending. A user-invoked IPC send operation currently transfers an outgoing message.

6 Waiting to receive. A user-invoked IPC receive operation currently waits for an incoming mes-
sage.

7 Receiving. A user-invoked IPC receive operation currently receives an incoming message.

ErrorCode [TCR] Set if lower 8 bits of result = 0. Undefined if lower 8 bits of result 6=0.

= 1 No privilege. Current thread is not the scheduler of the destination thread.

= 2 The dest parameter specified an invalid thread ID.

= 5 Invalid parameter. The specified time-slice length, total quantum, priority, or processor number
was invalid.

time control rem ts (16) rem total (16)

SCHEDULE 33

rem ts Remainder of the current timeslice.

rem total Remaining total quantum of the thread.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/schedule.h>

Word Schedule (ThreadId dest, Word TimeControl, ProcessorControl, prio, PreemptionControl, Word&
old TimeControl)

Convenience Programming Interface

Derived Functions:

#include <l4/schedule.h>

Word Set Priority (ThreadId dest, Word prio)
{ Schedule (dest, -1, -1, prio, -1) }

Word Set ProcessorNo (ThreadId dest, Word ProcessorNo)
{ Schedule (dest, -1, ProcessorNo, -1, -1) }

Word Timeslice (ThreadId dest, Time & ts, Time & tq)
Delivers the remaining timeslice and total quantum of the given thread.

Word Set Timeslice (ThreadId dest, Time ts, Time tq)
{ Schedule (dest, ts * 216 + tq, -1, -1, -1) }

Word Set PreemptionDelay (ThreadId dest, Word sensitivePrio, Word maxDelay)
{ Schedule (dest, -1, -1, -1, SensitivePrio * 216 + MaxDelay) }

Support Functions:

Word ErrorCode ()

Word ErrNoPrivilege

Word ErrInvalidThread

34 SCHEDULE

Word ErrInvalidParam

PREEMPT FLAGS 35

3.6 Preempt Flags [TCR]

The preemption flags TCR controls asynchronous preemptions (timeslice exhausted or activation of a higher-priority
thread including device interrupts).

Preempt Flags
I d s ∼

The ds-flags are used to control the microkernel. User threads can set/reset them. The I-flag
signals an event to the user. It is set by the microkernel and typically read/reset by the user.

s = 0 Asynchronous preemptions are not signaled to the exception handler.

s = 1 Asynchronous preemptions are signaled as preemption faults to the exception handler. If d = 0
this happens immediately. Otherwise, it is delayed until the thread continues execution after the
preemption.

d = 0 All asynchronous preemptions happen immediately. If they are signaled as preemption faults
(s = 1), this happens after the preemption took place, i.e., when the thread gets reactivated.

d = 1 Asynchronous preemptions are delayed if the priority of the preemptor is lower or equal than
the sensitive priority for the current thread. (The sensitive priority is set by the scheduler, see
page 32.) A delayed preemption does not interrupt the current thread immediately but is post-
poned until the current thread invokes a systemcall thread switch (nilthread). However, a pend-
ing preemption must not be delayed for longer than the maximum delay that was set by the
thread’s scheduler. Such a preemption-delay overflow resets the d bit and is signaled to the
exception handler.

I = 0 No asynchronous preemption is pending.

I = 1 An asynchronous preemption is currently pending, i.e., the thread should as soon as possible
reset the d-flag and invoke thread switch. Invoking thread switch re-enables the maximum delay
for the next delayed asynchronous preemption.
Invoking thread switch is not required if no asynchronous preemption is pending (I = 0) after
the user thread has reset the d-flag.

Generic Programming Interface

#include <l4/schedule.h>

Bool EnablePreemptionFaultException ()

Bool DisablePreemptionFaultException ()
Sets/resets the s-flag and delivers the old s-flag value (true = set).

Bool DisablePreemption ()

Bool EnablePreemption ()
Sets/resets the d-flag and delivers the old d-flag value (true = set).

Bool PreemptionPending ()
Resets the I-flag and delivers the old I-flag value (true = set).

36 PREEMPT FLAGS

Chapter 4

Address Spaces and
Mapping

38 FPAGE

4.1 Fpage [Data Type]

Fpages (Flexpages) are regions of the virtual address space. An fpage consists of all pages mapped actually in this region
sans kernel mapped objects, i.e., kernel interface page and UTCBs. Fpages have a size of at least 1 K. For specific
processors, the minimal fpage size may be larger; e.g., a Pentium processor offers a minimal page size of 4 K while the
Alpha processor offers smallest pages of 8 K. Fpages smaller than the minimal page size are treated as nilpages. The
kernel interface page (see page 3) specifies which page sizes are supported by the hardware/kernel. An fpage of size 2s

has a 2s-aligned base address b, i.e., b ≡ 0 (mod 2s), where s≥10 for all architectures.
Mapped fpages are considered inseparable objects. That is, if an fpage is mapped, the mapper can not later partially

unmap the mapped page; the whole fpage must be unmapped in a single operation. The mappee can, however, separate
the fpage and map fpages (objects) of smaller size. Partially unmapping an fpage might or might not work on some
systems. The kernel will give no indication as to whether such an operation succeeded or not.

fpage (b, 2s)
b/210

(22/54) s (6) 0 r w x

Special fpage denoters describe the complete user address space and the nilpage, an fpage which has no base address and
a size of 0:

complete
0 (22/54) s = 1 (6) 0 r w x

nilpage
0 (32/64)

Access Rights

rwx The rwx bits define the accessibility of the fpage:

r readable
w writable
x executable

A bit set to one permits the corresponding access to the newly-mapped/granted page provided
that the mapper itself possesses that access right. If the mapper does not have the access right
itself or if the bit is set to zero the mapped/granted page will not get the corresponding access
right.
Note that processor architectures may impose restrictions on the access-right combinations.
However, read-only (including execute), rwx = 101, and read/write/execute, rwx = 111,
should be valid for any processor architecture. The kernel interface page (see page 3) specifies
which access rights are supported in the processor architecture.

Generic Programming Interface

#include <l4/space.h>

struct FPAGE {Word raw }

Word Readable

Word Writable

FPAGE 39

Word eXecutable

Word FullyAccessible

Word ReadeXecOnly

Word NoAccess

Fpage Nilpage

Fpage CompleteAddressSpace

Bool IsNilFpage (Fpage f)
{ f == Nilpage }

Fpage Fpage (Word BaseAddress, int FpageSize ≥ 1K)

Fpage FpageLog2 (Word BaseAddress, int Log2FpageSize < 64)
Delivers an fpage with the specified location and size.

Word Address (Fpage f)

Word Size (Fpage f)

Word SizeLog2 (Fpage f)
Delivers address/size of specified fpage.

Word Rights (Fpage f)

void Set Rights (Fpage& f, Word AccessRights)
Delivers/sets the access rights for the specified fpage.

Fpage + (Fpage f, Word AccessRights) [FpageAddRights]

Fpage += (Fpage f, Word AccessRights) [FpageAddRightsTo]

Fpage − (Fpage f, Word AccessRights) [FpageRemoveRights]

Fpage −= (Fpage f, Word AccessRights) [FpageRemoveRightsFrom]
Adds/removes specified access rights from fpage. Delivers new fpage value.

40 UNMAP

4.2 UNMAP [Systemcall]

−→Word control void

The specified fpages (located in MR 0...) are unmapped. Fpages are mapped as part of the IPC operation (see page 61).

Input Parameters

control 0 (25/57) f k (6)

k Specifies the highest MR k that holds an fpage to be unmapped. The number of fpages is thus
k + 1.

f = 0 The fpages are unmapped recursively in all address spaces in which threads of the current ad-
dress space have mapped them before. However, the fpages remain unchanged in the current
address space.

f = 1 The fpages are unmapped like in the f = 0 case and, in addition, also in the current address
space.

FpageList MR 0...k Fpages to be processed.

Fpage MR i
fpage (28/58) 0 r w x

Fpage to be unmapped. (The term unmapped is used even if effectively no access right is re-
moved.) A nilpage specifies a no-op.

0rwx Any access bit set to 1 revokes the corresponding access right. A 0-bit specifies that the corre-
sponding access right should not be affected. Typical examples:

=0111 Complete unmap of the fpage.

=0010 Partial unmap, revoke writability only. As a result, the fpage is set to read-only.

=0000 No unmap. This case is particularly useful if only dirty and accessed bits should be read and
reset without changing the mapping.

Output Parameters

FpageList MR 0...k The accessed status bits in the fpages are updated.

UNMAP 41

Fpage MR i
fpage (28/58) 0 R WX

The status bits Referenced, Written, and eXecuted of all pages processed by the unmap operation
are reset and the bitwise OR-ed old values of all the processed pages are delivered in MR 0...k.
For processors that do not differentiate between read access and execute access, the R and X
bits are unified: either both are set or both are reset. Resetting status bits is not a recursive
operation. However, the status bit values for pages within the current space will also reflect
accesses performed on recursive mappings.

R = 0 No part of the fpage has been Referenced after the last unmap operation (or after the initial map
operation). This includes all recursively mapped pages.
Remark: The meaning of referenced slightly differs from read. Not being referenced means that
not only no read access but that also no write and execute access occurred.

R = 1 At least one page of the specified fpage (including all recursive mappings) has been referenced
after the last unmap operation (or after the initial map operation). All in-kernel R bits are reset
Remark: The meaning of referenced slightly differs from read. Write accesses and execute
accesses also set the R bit.

W = 0 No part of the fpage has been written after the last unmap operation (or after the initial map
operation), i.e., the fpage is clean. This includes all recursively mapped pages.

W = 1 At least one page of the specified fpage (including all recursive mappings) has been written after
the last unmap operation (or after the initial map operation), i.e., the fpage is dirty.
All in-kernel dirty bits are reset.

X = 0 No part of the fpage has been eXecuted after the last unmap operation (or after the initial map
operation). This includes all recursively mapped pages.

X = 1 At least one page of the specified fpage (including all recursive mappings) has been executed
after the last unmap operation (or after the initial map operation). All in-kernel X bits are reset.
Remark: For processors that do not differentiate between read and execute accesses, the X bit
is set to 1 iff R = 1.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/space.h>

void Unmap (Word control)

Convenience Programming Interface

Derived Functions:

#include <l4/space.h>

Fpage Unmap (Fpage f) [UnmapFpage]
{ LoadMR (0, f); Unmap (0); StoreMR (0, f); f }

void Unmap (Word n, Fpage& [n] fpages) [UnmapFpages]
{ LoadMRs (0, n, fpages); Unmap (n− 1); StoreMRs (0, n, fpages); }

Recursively unmaps the specified fpage(s) from all address spaces except the current one.

42 UNMAP

Fpage Flush (Fpage f)
{ LoadMR (0, f); Unmap (64); StoreMR (0, f); f }

void Flush (Word n, Fpage& [n] fpages) [FlushFpages]
{ LoadMRs (0, n, fpages); Unmap (64 + n− 1); StoreMRs (0, n, fpages); }

Recursively unmaps the specified fpage(s) from all address spaces, including the current one.

Fpage GetStatus (Fpage f)
{ LoadMR (0, f − FullyAccessible); Unmap (0); StoreMR (0, f); f }

Resets and delivers the status bits of the specified fpage.

Bool WasReferenced (Fpage f)

Bool WasWritten (Fpage f)

Bool WaseXecuted (Fpage f)
Checks the status bits of specified fpage. The specified fpage must be the output of an Unmap (),
Flush (), or GetStatus () function.

SPACECONTROL 43

4.3 SPACECONTROL [Privileged Systemcall]

−→ThreadId SpaceSpecifier Word result
Word control Word control
Fpage KernelInterfacePageArea
Fpage UtcbArea
ThreadId Redirector

A privileged thread, e.g., the root server, can configure address spaces through this function.

Input Parameters

SpaceSpecifier Since address spaces do not have ids, a thread ID is used as SpaceSpecifier. It specifies the
address space in which the thread resides. The SpaceSpecifier thread must exist although it may
be inactive or not yet started. In particular, the thread may reside in an empty address space that
is not yet completely created.

KernelInterfacePageArea
Specifies the fpage where the kernel should map the kernel interface page. The supplied fpage
must have a size specified in the KipAreaInfo field of the kernel interface page, must fit entirely
into the user-accessible part of the address space and must not overlap with the UTCB area (see
below). Address 0 of the kernel interface page is mapped to the fpage’s base address.
The value is ignored if there is at least one active thread in the address space.

KipAreaInfo [KernelInterfacePage Field]
Permits calculation of the appropriate page size of the KernelInterface area fpage.

∼ (26/58) s (6)

s The size of the kernel interface page area is 2s.

UtcbArea Specifies the fpage where the kernel should map the UTCBs of all threads executing in the
address space. The fpage must fit entirely into the user-accessible part of an address space and
must not overlap with the KIP area. The fpage size has to be at least the smallest supported
hardware-page size. In fact, the size of the UTCB area restricts the maximum number of threads
that can be created in the address space. See the kernel interface page for the space and alignment
that is required for UTCBs.
The value is ignored if there is at least one active thread in the address space.

UtcbInfo [KernelInterfacePage Field]
Permits to calculate the appropriate page size of the UTCB area fpage and specifies the size and
alignment of UTCBs. Note that the size restricts the total number of threads that can reside in
an address space.

∼ (10/42) s (6) a (6) m (10)

s The minimal area size for an address space’s UTCB area is 2s. The size of the UTCB area limits
the total number of threads k to 2amk ≤ 2s.

m UTCB size multiplier.

44 SPACECONTROL

a The UTCB location must be aligned to 2a. The total size required for one UTCB is 2am.

Redirector = nilthread
The current redirector setting for the specified space is not modified.

Redirector = anythread
All threads within the specified space are allowed to communicate with any thread in the system.

Redirector 6= anythread, 6= nilthread
All threads within the specified address space are only allowed to send an IPC to a local thread
or to a thread in the same address space as the specified redirector. All other send operations
will be deflected to the redirector, the redirected bit (see page 64) in the received message will
be set, and the IntendedReceiver TCR will indicate the intended receiver of the message.

control The control field is architecture specific (see Appendix A.5). It is undefined for some architec-
tures, but should for reasons of upward compatibility be set to zero.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set if result = 0. Undefined if result 6=0.

= 1 No privilege. Current thread does not have privilege to perform operation.

= 3 Invalid space. The SpaceSpecifier parameter specified an invalid thread ID.

= 6 Invalid UTCB area. Specified UTCB area too small (see UTCB info on page 4) or not within
user accessible virtual memory region (see Memory Descriptors on page 6).

= 7 Invalid KIP area. Specified KIP area too small (see KIP area info on page 4) or not within user
accessible virtual memory region (see Memory Descriptors on page 6) or KIP area overlaps with
UTCB area.

control Delivers the space control value that was effective for the thread when the operation was invoked.
The value is architecture specific.

Pagefaults

No pagefaults will happen.

Generic Programming Interface

System-Call Function:

#include <l4/space.h>

SPACECONTROL 45

Word SpaceControl (ThreadId SpaceSpecifier, Word control, Fpage KernelInterfacePageArea, UtcbArea, ThreadId
Redirector, Word& old Control)

Convenience Programming Interface

Support Functions:

Word ErrorCode ()

Word ErrNoPrivilege

Word ErrInvalidSpace

Word ErrUtcbArea

Word ErrKipArea

46 SPACECONTROL

Chapter 5

IPC

48 MESSAGES AND MESSAGE REGISTERS (MRS)

5.1 Messages And Message Registers (MRs) [Virtual Registers]

Messages can be sent and received through the IPC system call (see page 61). Basically, the sender writes a message
into the sender’s message registers (MRs) and the receiver reads it from the receiver’s MRs. Each thread has 64 MRs,
MR 0...63. A message can use some or all MRs to transfer untyped words; it can include memory strings and fpages
which are also specified using MRs.

MRs are virtual registers (see page 11), but they are more transient than TCRs. MRs are read-once registers: once
an MR has been read, its value is undefined until the MR is written again. The send phase of an IPC implicitly reads all
MRs; the receive phase writes the received message into MRs.

The read-once property permits to implement MRs not only by special registers or memory locations, but also by
general registers. Writing to such an MR has to block the corresponding general register for code-generator use; reading
the MR can release it. Typically, code generated by an IDL compiler will load MRs just before an IPC system call and
store them to user variables just afterwards.

Messages

A message consists of up to 3 sections: the mandatory message tag, followed by an optional untyped-words section,
followed by an optional typed-items section. The message tag is always held in MR 0. It contains message control
information and the message label which can be freely set by the user. The kernel associates no semantics with it. Often,
the message label is used to encode a request key or to define the method that should be invoked by the message.

MsgTag [MR0]
label (16/48) flags (4) t (6) u (6)

u Number of untyped words following word 0. MR 1...u hold the untyped words. u = 0 denotes
a message without untyped words.

t Number of typed-item words following the untyped words or the message tag if no untyped
words are present. The typed items use MR u+1...u+t. A message without typed items has
t = 0.

flags Message flags, see IPC systemcall, page 61.

label Freely available, often used to specify the request type or invoked method.

untyped words [MR1...u]
The optional untyped-words section holds arbitrary data that is untyped from the kernel’s point
of view. The data is simply copied to the receiver. The kernel associates no semantics with it.

typed items [MRu+1...u+t]

MESSAGES AND MESSAGE REGISTERS (MRS) 49

The optional typed-items section is a sequence of items such as string items (page 56), map
items (page 53), and grant items (page 55). Typed message items have their type encoded in the
lowermost 4 bits of their first word:

0hhC StringItem see page 56
100C MapItem see page 53
101C GrantItem see page 55
110C Reserved
111C Reserved

The C bit signals whether the typed item is followed by another typed item (C = 1) or is the
last one of the typed-item section (C = 0). The typed items must exactly fit into MR u+1...u+t.

Note that C and t redundantly describe the message. This is by intention. The C bit allows
efficient message parsing, whereas t + u can be used to store all MRs of a message to memory
without parsing the complete message. Upon message sending, the C bits are completely ig-
nored. The kernel will, however, ensure that the MRs on the receiver side will have the C bits
set properly.

Example Messages

struct (label, Word [2] w)

Word w2 (32/64) MR 2

Word w1 (32/64) MR 1

label (16/48) flags t = 0 u = 2 MR 0

struct (label, MapItem m)

MapItem m
1 0 0 0 MR 1,2

label (16/48) flags t = 2 u = 0 MR 0

struct (label, Word w, StringItem s1, s2)

StringItem s2
0 h h 0 MR 4,5

StringItem s1
0 h h 1 MR 2,3

Word w (32/64) MR 1

label (16/48) flags t = 4 u = 1 MR 0

struct (label, Word [3] w, MapItem m, GrantItem g, StringItem s)

50 MESSAGES AND MESSAGE REGISTERS (MRS)

StringItem s
0 h h 0 MR 8,9

GrantItem g
1 0 1 1 MR 6,7

MapItem m
1 0 0 1 MR 4,5

Word w3 (32/64) MR 3

Word w2 (32/64) MR 2

Word w1 (32/64) MR 1

label (16/48) flags t = 6 u = 3 MR 0

Generic Programming Interface

The listed generic functions permit user code to access message registers independently of the processor-specific MR
model. All functions are user-level functions; the microkernel is not involved.

MsgTag

#include <l4/ipc.h>

struct MSGTAG {Word raw }

MsgTag Niltag
A message tag with no untyped or typed words, no label, and no flags.

Bool == (MsgTag l, r) [IsMsgTagEqual]

Bool != (MsgTag l, r) [IsMsgTagNotEqual]
Compares all field values of two message tags.

Word Label (Msg Tag t)

Word UntypedWords (Msg Tag t)

Word TypedWords (Msg Tag t)
Delivers the message label, number of untyped words, and number of typed words, respectively.

MsgTag + (MsgTag t, Word label) [MsgTagAddLabel]

MsgTag += (MsgTag t, Word label) [MsgTagAddLabelTo]
Adds a label to a message tag. Old label information is overwritten by the new label.

MsgTag MsgTag ()

void Set MsgTag (MsgTag t)
Delivers/sets MR 0.

MESSAGES AND MESSAGE REGISTERS (MRS) 51

Convenience Programming Interface

IDL-compiler generated Operations

IDL code generators are not restricted to the generic interface for accessing MRs. Instead, they can use processor-specific
methods and thus generate heavily optimized code for MR access.

However, such processor-specific MR operations are not generally defined and should be used exclusively
by processor-specific IDL code generators. All other programs must use the operations defined in this
generic interface.

Msg

#include <l4/ipc.h>

struct MSG {Word raw [64] }

void Put (Msg& msg, Word l, int u, Word& [u] ut, int t, {MapItem, GrantItem, StringItem}& Items) [MsgPut]
Loads the specified parameters into the memory object msg. The parameters u and t respectively
indicate number of untyped words and number of typed words (i.e., the total size of all typed
items). It is assumed that the msg object is large enough to contain all items.

void Get (Msg& msg, Word& ut, {MapItem, GrantItem, StringItem}& Items) [MsgGet]
Stores the msg object into the specified parameters. Type consistency between the message in
the memory object and the specified parameter list is not checked.

MsgTag MsgTag (Msg& msg) [MsgMsgTag]

void Set MsgTag (Msg& msg, MsgTag t) [Set MsgMsgTag]
Delivers/sets the message tag of the msg object.

Word Label (Msg& msg) [MsgLabel]

void Set Label (Msg& msg, Word label) [Set MsgLabel]
Delivers/sets the label of the msg object.

void Load (Msg& msg) [MsgLoad]
Loads message registers MR 0... from the msg object.

void Store (MsgTag t, Msg& msg) [MsgStore]
Stores the message tag t and the current message beginning with MR 1 to the memory object
msg. The number of message registers to be stored is derived from t.

void Clear (Msg& msg) [MsgClear]
Empties the msg object (i.e., clears the message tag).

void Append (Msg& msg, Word w) [MsgAppendWord]

void Append (Msg& msg, MapItem m) [MsgAppendMapItem]

void Append (Msg& msg, GrantItem g) [MsgAppendGrantItem]

void Append (Msg& msg, StringItem s) [MsgAppendSimpleStringItem]

void Append (Msg& msg, StringItem& s) [MsgAppendStringItem]
Appends an untyped or a typed item to the msg object. Compound strings must always be
passed in by reference. A compound string passed by value will be treated as a simple string
(see page 56). It is assumed that there is enough memory in the msg object to contain the new
item.

void Put (Msg& msg, Word u, Word w) [MsgPutWord]
Puts an untyped word at untyped word position u (first untyped word has position 0) in the msg
object. It is assumed that the object contains at least u + 1 untyped words.

void Put (Msg& msg, Word t, MapItem m) [MsgPutMapItem]

52 MESSAGES AND MESSAGE REGISTERS (MRS)

void Put (Msg& msg, Word t, GrantItem g) [MsgPutGrantItem]

void Put (Msg& msg, Word t, StringItem s) [MsgPutSimplStringItem]

void Put (Msg& msg, Word t, StringItem& s) [MsgPutStringItem]
Puts a typed item into the msg object, starting at typed word position t (first typed word has
position 0). Compound strings must always be passed in by reference. A compound string
passed by value will be treated as a simple string (see page 56). It is assumed that that the object
has enough typed words to contain the new item.

Word Get (Msg& msg, Word u) [MsgWord]

void Get (Msg& msg, Word u, Word& w) [MsgGetWord]
Delivers the untyped words at position u. It is assumed that the object contains at least u + 1
untyped words.

Word Get (Msg& msg, Word t, MapItem& m) [MsgGetMapItem]

Word Get (Msg& msg, Word t, GrantItem& g) [MsgGetGrantItem]

Word Get (Msg& msg, Word t, StringItem& s) [MsgGetStringItem]
Delivers the typed item starting at typed word position t. It is assumed that the requested item
is of the right size and type. Returns the size (in words) of the delivered item.

Low-Level MR Access

#include <l4/ipc.h>

void StoreMR (int i, Word& w)

void LoadMR (int i, Word w)
Delivers/sets MR i.

void StoreMRs (int i, k, Word& [k] w)

void LoadMRs (int i, k, Word& [k] w)
Stores/loads MR i...i+k−1 to/from memory.

MAPITEM 53

5.2 MapItem [Data Type]

An fpage (see page 38) or IO fpage that should be mapped is sent to the mappee as part of a message. A map operation
is a no-op within the same address space. The fpage is specified by a two-word descriptor:

snd fpage (28/60) 0 r w x MR i+1

snd base / 1024 (22/54) 0 (6) 1 0 0 C MR i

access rights rwx The effective access rights for the newly mapped page are calculated by bitwise AND-ing the
access rights specified in the snd fpage and the access rights that the mapper itself has on that
fpage. As such, the mapper can restrict the effective access rights but not widen them.

snd base The send base specifies the semantics of the map operation if the size of the snd fpage is larger
or smaller than the window in which the receiver is willing to accept a mapping (see page 59).
If the size of the snd fpage, 2s, is larger than the receive window, 2r , the send base indicates
which region of the snd fpage is transmitted. More precisely:

send region = fpage (addrs + 2rk, 2r), for some k ≥ 0 :

addrs + 2rk ≤ addrs + (snd base mod 2s) < addrs + 2rk + 2r

and where addrs is the base address of the snd fpage. If the size of the snd fpage, 2s, is smaller
than the receive window, 2r , the send base indicates where in the receive window the snd fpage
is mapped. More precisely:

receive region = fpage (addrr + 2sk, 2s), for some k ≥ 0 :

addrr + 2sk ≤ addrr + (snd base mod 2r) < addrr + 2sk + 2s

and where addrr is the base address of the receive window.

Pages already mapped in the mappee’s address space that would conflict with new mappings are implicitly unmapped
before new pages are mapped. For performance reasons extension of access rights is possible without prior unmapping,
iff the very same mapping already exists. This is the case, when

• the mapper maps from the same address space as the existing mapping; and

• the mapper maps from the same virtual source address as the existing mapping; and

• the mapper maps to the same virtual destination address as the existing mapping; and

• the object (physical address) is the same as the existing mapping.

Access rights can not be revoked by mapping. The access rights of the resulting mapping are a bitwise OR of the existing
and the new mapping’s access rights. Access rights are not extended recursively.

Generic Programming Interface

#include <l4/ipc.h>

struct MAPITEM {Word raw [2] }

MapItem MapItem (Fpage f, Word SndBase)
Delivers a map item with the specified fpage and send base.

54 MAPITEM

Bool MapItem (MapItem m) [IsMapItem]
Delivers true if map item is valid. Otherwise delivers false.

Fpage SndFpage (MapItem m) [MapItemSndFpage]

Word SndBase (MapItem m) [MapItemSndBase]
Delivers fpage/send base of map item.

GRANTITEM 55

5.3 GrantItem [Data Type]

An fpage (see page 38) or IO fpage that should be granted is sent to the mappee as part of a message. It is specified by a
two-word descriptor:

snd fpage (28/60) 0 r w x MR i+1

snd base / 1024 (22/54) 0 (6) 1 0 1 C MR i

access rights rwx The effective access rights for the granted page are calculated by bitwise anding the access rights
specified in the snd fpage and the access rights that the mapper itself has on that fpage. As such,
the granter can restrict the effective access rights but not widen them.

snd base The send base specifies the semantics of the map operation if the size of the snd fpage is larger
or smaller than the window in which the receiver is willing to accept a mapping (see page 59).
If the size of the snd fpage, 2s, is larger than the receive window, 2r , the send base indicates
which region of the snd fpage is transmitted. More precisely:

send region = fpage (addrs + 2rk, 2r), for some k ≥ 0 :

addrs + 2rk ≤ addrs + (snd base mod 2s) < addrs + 2rk + 2r

and where addrs is the base address of the snd fpage. If the size of the snd fpage, 2s, is smaller
than the receive window, 2r , the send base indicates where in the receive window the snd fpage
is mapped. More precisely:

receive region = fpage (addrr + 2sk, 2s), for some k ≥ 0 :

addrr + 2sk ≤ addrr + (snd base mod 2r) < addrr + 2sk + 2s

and where addrr is the base address of the receive window.

Pages already mapped in the grantee’s address space that would conflict with new mappings are implicitly unmapped
before new pages are mapped.

Generic Programming Interface

#include <l4/ipc.h>

struct GRANTITEM {Word raw [2] }

GrantItem GrantItem (Fpage f, Word SndBase)
Delivers a grant item with the specified fpage and send base.

Bool GrantItem (GrantItem g) [IsGrantItem]
Delivers true if grant item is valid. Otherwise delivers false.

Fpage SndFpage (GrantItem g) [GrantItemSndFpage]

Word SndBase (GrantItem g) [GrantItemSndBase]
Delivers fpage/send base of grant item.

56 STRINGITEM

5.4 StringItem [Data Type]

A string item specifies a sequence of bytes in user space. No alignment is required, the maximal string size is 4 MB. In
send messages, such a string is copied to the receiver buffer when transferring the message. String items are also used to
specify receive buffers in buffer registers on the receiver’s side.

Simple String

A simple string is a contiguous sequence of bytes.

string ptr (32/64) MR i+1

string length (22/54) 0 0 (5) 0 h h C MR i

string ptr The start address of the string to be sent or the start address of the buffer for receiving a string (no
alignment restrictions). However, the string/buffer must fit entirely into the legally addressable
user space.

string length The length of the string to be sent or the size of the receive buffer. In the second case, strings
up to (including) this length can be received. Maximum string length is 4 M bytes, even if the
according field is 54 bits wide on 64-bit processors.

h h Cacheability hint. Except for hh = 00, the semantics of this parameter depends on the processor
type (see Appendices A.6 and B.5).

hh = 00 Use the processor’s default cacheability strategy. Typically, cache lines are allocated for data
read and written (assuming that the processor’s default strategy is write-back and write-allocate).

Compound String

A compound string is a noncontiguous string that consists of multiple contiguous substrings which can be scattered
around the entire user address space. The substrings must not overlap. For send and receive IPC operations, a compound
string is handled as a single logical string. When sending such a string through IPC, the substrings are transferred as if
they were one contiguous string (gather). On the receiver side, a compound string buffer is treated as one logical buffer.
The corresponding received string is scattered among the compound buffer’s substrings.

A compound string can be specified as a sequence of substrings where each substring has the form of a simple string
except that the continuation flag c is set for all but the last substring. If j subsequent substrings have the same size, e.g.,
for equally sized buffers, a single length word can be used for all j substrings so that only j + 1 words instead of 2j
words are required.

length word
substring length (22/54) c j − 1 (5) 0 h h C

The type information 0hhC is only required for the first word of a string descriptor. The field is
ignored for further length words in a compound-string descriptor.

j Number of subsequent string-ptr words. These string ptrs specify j substrings that have all the
same substring length.

c = 0 Continuation flag reset. The compound string descriptor ends with the jth string ptr word fol-
lowing the current length word.

c = 1 Continuation flag set. The current length word and j string-ptr words are followed by (at least)
one substring descriptor, i.e., another length word, etc.

STRINGITEM 57

Example
substringj+1 ptr (32/64) MR i+j+2

substringj+1 length (22/54) 0 0 (5) 0 (4) MR i+j+1

substringj ptr (32/64) MR i+j

...
...

substring1 ptr (32/64) MR i+1

substring1...j length (22/54) 1 j − 1 (5) 0 h h C MR i

Generic Programming Interface

#include <l4/ipc.h>

struct STRINGITEM {Word raw [*] }

Bool StringItem (StringItem& s) [IsStringItem]
Delivers true if string item is valid. Otherwise delivers false.

Bool CompoundString (StringItem& s)
Delivers the c-flag value (true = set).

Word Substrings (StringItem& s)

void* Substring (StringItem& s, Word n)
Delivers number of substrings/address of nth substring.

StringItem StringItem (int size, void* address)
Delivers a simple string item with the specified size and location.

StringItem & += (StringItem& dest, StringItem AdditionalSubstring) [AddSubstringTo]
Append substring to the string item. It is assumed that there is enough memory in the string item
to contain the new substring.

StringItem & += (StringItem& dest, void* AdditionalSubstringAddress) [AddSubstringAddressTo]
Append a new substring pointer to the string item. It is assumed that there is enough memory in
the string item to contain the new substring pointer.

Convenience Programming Interface

Support Functions:

#include <l4/ipc.h>

struct CACHEALLOCATIONHINT {Word raw }

CacheAllocationHint UseDefaultCacheLineAllocation

58 STRINGITEM

Bool == (CacheAllocationHint l, r) [IsCacheAllocationHintEqual]

Bool != (CacheAllocationHint l, r) [IsCacheAllocationHintNotEqual]
Compares two cache allocation hints.

CacheAllocationHint CacheAllocationHint (StringItem s)
Delivers the cache allocation hint of the string item.

StringItem + (StringItem s, CacheAllocationHint h) [AddCacheAllocationHint]

StringItem += (StringItem s, CacheAllocationHint h) [AddCacheAllocationHintTo]
Adds a cache allocation hint to a string item. An already existing hint is overwritten.

STRING BUFFERS AND BUFFER REGISTERS (BRS) 59

5.5 String Buffers And Buffer Registers (BRs) [Pseudo Registers]

For receiving messages that contain string items, the receiver has to specify appropriate string buffers. Such buffers are
described by string items (see page 56). A buffer can be contiguous (simple string) or non-contiguous (compound string).

Such buffer descriptors are held in 33 per-thread Buffer Registers BR 0...32. The number of buffer registers is sufficient
to specify, for example, one compound buffer of 31 equally-sized sub-buffers. Up to 16 buffers can be specified provided
that not more than 33 BRs are required.

When a message is received, the first message string item is copied into the first buffer string item which starts at BR 1;
the next message string item is copied to the next buffer string item, etc. The list of buffer strings is terminated by having
the C bit in the item type specifier of the last string zeroed.

BRs are registers in the sense that they are per-thread objects and can only be addressed directly, not indirectly through
pointers. BRs are static objects like TCRs, i.e., they keep their values until explicitly modified. BRs can be mapped to
either special registers or to memory locations.

Acceptor [BR0]
RcvWindow (28/60) 0 0 0 s

BR 0 specifies which typed items are accepted when a message is received.

RcvWindow Fpage (without access bits) that specifies the address-space window in which mappings and
grants are accepted. Nilpage denies any mapping or granting; CompleteAddressSpace accepts
any mapping or granting.

s StringItems are accepted iff s = 1.

buffer string items [BR1...]
contain the valid buffer string items. Ignored if s = 0 in BR 0.

Generic Programming Interface

The listed generic functions permit user code to access buffer registers independently of the processor-specific BR model.
All functions are user-level functions; the microkernel is not involved.

Acceptor

#include <l4/ipc.h>

struct ACCEPTOR {Word raw }

Acceptor UntypedWordsAcceptor

Acceptor StringItemsAcceptor

Acceptor MapGrantItems (Fpage RcvWindow)
Delivers an acceptor which allows untyped words, string items, or mappings and grants.

Acceptor + (Acceptor l, r) [AddAcceptor]

Acceptor += (Acceptor l, r) [AddAcceptorTo]
Adds mappings/grants or string items to an acceptor. Adding a non-nil receive window will
replace an existing window.

Acceptor − (Acceptor l, r) [RemoveAcceptor]

Acceptor −= (Acceptor l, r) [RemoveAcceptorFrom]
Removes mappings/grants or string items from an acceptor. Removing a non-nil receive window
will deny all mappings or grants, regardless of the size of the receive window.

60 STRING BUFFERS AND BUFFER REGISTERS (BRS)

Bool StringItems (Acceptor a) [HasStringItems]

Bool MapGrantItems (Acceptor a) [HasMapGrantItems]
Checks whether string items/mappings are allowed.

Fpage RcvWindow (Acceptor a)
Delivers the address space window where mappings and grants are accepted. Delivers nilpage
if mappings or grants are not allowed.

void Accept (Acceptor a)
Sets BR 0.

void Accept (Acceptor a, MsgBuffer& b) [AcceptStrings]
Sets BR 0 and loads the buffer description b into BR 1....

Acceptor Accepted ()
Delivers BR 0.

Convenience Programming Interface

MsgBuffer

#include <l4/ipc.h>

struct MSGBUFFER {Word raw [32] }

void Clear (MsgBuffer& b) [MsgBufferClear]
Clears the message buffer (i.e., inserts a single empty string into it).

void Append (MsgBuffer& b, StringItem s) [MsgBufferAppendSimpleRcvString]

void Append (MsgBuffer& b, StringItem * s) [MsgBufferAppendRcvString]
Appends a string buffer to the message buffer. Compound strings must always be passed in by
reference. A compound string passed by value will be treated as a simple string. It is assumed
that there is enough memory in the message buffer object to contain the new string buffer.

Low-Level BR Access

#include <l4/ipc.h>

void StoreBR (int i, Word& w)

void LoadBR (int i, Word w)
Delivers/sets the value of BR i.

void StoreBRs (int i, k, Word& [k])

void LoadBRs (int i, k, Word& [k])
Stores/loads BR i...i+k−1 to/from memory.

Code generators of IDL and other compilers are not restricted to the generic interface. They can use any processor-specific
methods and optimizations to access BRs.

IPC 61

5.6 IPC [Systemcall]

−→ThreadId to ThreadId from
ThreadId FromSpecifier
Word Timeouts

IPC is the fundamental operation for inter-process communication and synchronization. It can be used for intra- and
inter-address-space communication. All communication is synchronous and unbuffered: a message is transferred from
the sender to the recipient if and only if the recipient has invoked a corresponding IPC operation. The sender blocks until
this happens or until a period specified by the sender has elapsed without the destination becoming ready to receive.

IPC can be used to copy data as well as to map or grant fpages from the sender to the recipient. For the description of
messages see page 48. A single IPC call combines an optional send phase followed by an optional receive phase. Which
phases are included is determined by the parameters to and FromSpecifier. Transitions between send phase and receive
phase are atomic.

Ipc operations are also controlled by MRs, BRs and some TCRs. RcvTimeout and SndTimeout are directly specified
as system-call parameters. Each timeout can be 0,∞ (i.e., never expire), relative or absolute. For details on timeouts see
page 28.

Variants

To enable implementation-specific optimizations, there exist two variants of the IPC system call. Functionally, both
variants are identical. Transparently to the user, a kernel implementation can unify both variants or implement differently
optimized functions.

IPC Default IPC function. Must always be used except if all criteria for using LIPC are fulfilled.

LIPC IPC function that may be optimized for sending messages to local threads. Should be used
whenever it is absolutely clear that in the overwhelming majority of all invocations

• a send phase is included; and

• the destination thread is specified as a local thread ID; and

• a receive phase is included; and

• the destination thread runs on the same processor; and

• the RcvTimeout is∞, and

• the IPC includes no map/grant operations.

Input Parameters

to = nilthread IPC includes no send phase.

to 6= nilthread Destination thread; IPC includes a send phase

FromSpecifier = nilthread
IPC includes no receive phase.

62 IPC

FromSpecifier = anythread
IPC includes a receive phase. Incoming messages are accepted from any thread (including
hardware interrupts).

FromSpecifier = anylocalthread
IPC includes a receive phase. Incoming messages are accepted from any thread that resides in
the current address space.

FromSpecifier 6= nilthread, 6= anythread, 6= anylocalthread
Ipc includes a receive phase. Incoming messages are accepted only from the specified thread.
(Note that hardware interrupts can be specified.)

Timeouts SndTimeout (16) RcvTimeout (16)

RcvTimeout The receive phase waits until either a message transfer starts or the RcvTimeout expires. Ignored
for send-only IPC operations.
For relative receive timeout values, the receive timeout starts to run after the send phase has
successfully completed. If the receive timeout expires before the message transfer has been
started IPC fails with “receive timeout”. A pending incoming message is received if the timeout
period is 0.

SndTimeout If the send timeout expires before the message transfer could start the IPC operation fails with
“send timeout”. A send timeout of 0 ensures that IPC happens only if the addressed receiver is
ready to receive when the send IPC operation is invoked. Otherwise, IPC fails immediately, i.e.,
without blocking.

MsgTag [MR0]
label (16/48) 0 (3) p t (6) u (6)

Message head of the message to be sent. Only the upper 16/48 bits are freely available. The
lower 16 bits hold the SndControl parameter. It describes the message to be sent and contains
some control bits; ignored if no send phase.

u Number of untyped words following word 0. MR 1...u hold the untyped words. u = 0 denotes
a message with no untyped words.

t Number of words holding typed items that follow the untyped words (or the message tag if no
untyped words are present). The typed items use MR u+1 and following MRs, potentially up to
MR 63. t = 0 denotes a message without typed items.

p=0 Normal (unpropagated) send operation. The recipient gets the original sender’s id.

p=1 Propagating send operation. The VirtualSender TCR specifies the id of the originator thread.
(i.e., the thread to send the message on behalf of). If originator thread and current sender, or
current sender and receiver reside in the same address space, propagation is always permitted.
Otherwise, IPC occurs unpropagated. Propagation is also allowed if the originator thread is an
interrupt thread waiting (closed) for the current thread, or if the current sender is a redirector
for the originator thread (or there exists a chain of redirectors from the originator to the current
sender).
If propagation is permitted, the receiver receives the originator’s id instead of the current sender’s
id, the p bit in the receiver’s MsgTag is set, and the current sender’s id is stored in the receiver’s
ActualSender TCR. If the originator thread is waiting (closed) for a reply from the current sender,
the originator’s state is additionally modified so that it now waits for the new receiver instead of
the current sender.

label Freely available, often used to specify the request type or invoked method, respectively.

[MR1...u] Untyped words to be sent. Ignored if no send phase.

[MRu+1...u+t] Typed items to be sent. Ignored if no send phase.

IPC 63

XferTimeouts [TCR]

XferTimeout Snd (16) XferTimeout Rcv (16)

Once a message transfer has been started, the time for transferring the message is roughly
bounded by the minimum of sender’s and receiver’s XferTimeout. “Roughly” means that xfer
timeouts are only checked when message copy raises a pagefault in the sender’s or in the re-
ceiver’s address space. Copying data and mapping/granting is assumed to take no time. A
relative transfer timeout always refers to the beginning of the message transfer (actually when
the first page fault is raised). Logically, at that point it is transferred into an absolute timeout
which then is used as send and receive timeout for the first and all subsequent page-fault RPCs
in the message transfer.
If the effective transfer timeout expires during the message transfer, IPC fails with “xfer timeout”
(on both sides). Additional information specifies whether the page fault was in the receiver’s or
in the sender’s address space and which part of the message was already transferred. Each thread
has two transfer timeouts. One for the send phase and one for the receive phase.

Acceptor [BR0]
RcvWindow (28/60) 0 0 0 s

BR 0 specifies which typed items are accepted when a message is received.

RcvWindow Fpage (without access bits) that specifies the address-space window in which mappings and
grants are accepted. Nilpage denies any mapping or granting; CompleteAddressSpace accepts
any mapping or granting.

s StringItems are accepted iff s = 1.

buffer string items [BR1...]
contain the valid buffer string items. Ignored if s = 0 in BR 0.

Output Parameters

from Thread ID of the sender from which the IPC was received. Thread IDs are delivered as local
thread IDs iff they identify a thread executing in the same address space as the current thread. It
does not matter whether the sender specified the destination as local or global id.
Only defined for IPC operations that include a receive phase.

MsgTag [MR0]
label (16/48) E X r p t (6) u (6)

If the IPC operation included a receive phase, MR 0 contains the message tag of the received
message. The upper 16/48 bits contain the user-specified label. The lower bits describe the
received message, contain the error indicator, and the cross-processor IPC indicator.
MR 0 is defined even if the IPC operation did not include a receive phase. In the send-only case,
MR 0 returns the error indicator.

u Number of untyped words following word 0. u = 0 means no untyped words. For IPC opera-
tions without receive phase, u = 0 is delivered.

t Number of received words that hold typed items. t = 0 means no typed items. For IPC opera-
tions without receive phase, t = 0 is delivered.

p Propagated IPC. If reset (p = 0) the IPC was not propagated. If set (p = 1) the IPC was propa-
gated and the FromSpecifier indicates the originator thread’s id. The ActualSender specifies the
id of the thread which performed the propagation.

64 IPC

r Redirected IPC. If reset (r = 0) the IPC was not a redirected one. If set (r = 1) the IPC was
redirected to the current thread, and the IntendedReceiver TCR specifies the id of the thread
supposed to receive the message.

X Cross-processor IPC. If reset (X = 0) the received IPC came from a thread running on the
same processor as the receiver. If set (X = 1) the received IPC was cross-processor. For IPC
operations without receive phase, X = 0 is delivered.

E Error indicator. If reset (E = 0) the IPC operation terminated successful.
If set (E = 1) IPC failed. If the send phase was successful but a receive timeout occurred
afterwards, or if a message could only be partially transferred, the entire IPC fails. The error
code and additional information can be retrieved from the ErrorCode TCR. The fields label, t,
and u are valid if the error code signals a partially received message.

label Label of the received message. For IPC operations without receive phase, the label is 0.

[MR1...u] Untyped words that have been received. Undefined if no receive phase.

[MRu+1...u+k] Typed items that have been received. Undefined if no receive phase.

ErrorCode [TCR]
x (28/56) e (3) p

Only defined if the error indicator E in MR 0 is set. IPC failed, i.e., was not correctly completed.
The x field depends on the error code, see below. The p field specifies whether the error occurred
during send or receive phase. If the error occurred during the receive phase the send phase (if
any) was completed successfully before. If the error occurred during the send phase, the receive
phase (if any) was skipped.

p Specifies whether the error occurred during the send phase (p = 0) or the receive phase (p = 1).

errors 1, 2,3
∼ (28/60) e (3) p

Error happened before a partner thread was involved in the message transfer. Therefore, the
error is signaled only to the thread that invoked the failing IPC operation.

e = 1 Timeout.
From is undefined in this case.

e = 2 Non-existing partner. If the error occurred in the send phase, to does not exist. (Anythread as
a destination is illegal and will also raise this error.) If the error occurred in the receive phase,
FromSpecifier does not exist. (FromSpecifier = anythread is legal, and thus will never raise this
error.)

e = 3 Canceled by another thread (system call exchange registers).

errors 4,5,6,7
offset (28/60) e (3) p

A partner thread is already involved in the IPC operation, and the error is therefore signaled to
both threads.

offset The message transfer has been started and could not be completed. The offset identifies exactly
the number of bytes that have been been transferred successfully so far through string items.

e = 4 Message Overflow.
A message overflow can occur (1) if a receiving buffer string is too short, (2) if not enough
buffer string items are present, and (4) if a map/grant of an fpage fails because the system has
not enough page-table space available. The offset in conjunction with the received MRs permits
sender and receiver to exactly determine the reason.

e = 5 Xfer timeout during page fault in the invoker’s address space.

IPC 65

e = 6 Xfer timeout during page fault in the partner’s address space.

e = 7 Aborted by another thread (system call exchange registers).

Pagefaults

Three different types of pagefault can occur during ipc: pre-send, post-receive, and xfer pagefaults. Only xfer pagefault
are critical from a security point of view. Fortunately, messages without strings will never raise xfer pagefaults and need
thus no special pagefault provisions:

Pre-send pagefaults
happen in the sender’s context before the message transfer has really started. The destination
thread is not involved; in particular, it is not locked. Therefore, the destination thread might
receive another message or time out while the sender’s pre-send pagefault is handled. Send and
transfer timeouts do not control pre-send pagefaults. Pre-send pagefaults are uncritical from a
security point of view, since only the sender’s own pager is involved and only the sender could
suffer from its potential misbehavior.

Post-receive pagefaults
happen in the receiver’s context after the message has been transferred. The sender thread is no
longer involved, especially, it is no longer locked. Consequently, post-receive pagefault are not
subject to send and transfer timeouts. Like pre-send pagefaults, post-receive pagefaults are also
uncritical from a security perspective since only the receiver and its pager are involved.

Xfer pagefaults happen while the message is being transferred and both sender and receiver are involved. There-
fore, xfer pagefaults are critical from a security perspective: If such a pagefault occurs in the
receiver’s space, the sender may be starved by a malicious receiver pager. An xfer pagefault in
the sender’s space and a malicious sender pager may starve the receiver. As such, xfer pagefaults
are controlled by the minimum of sender’s and receiver’s xfer timeouts.

However, xfer pagefaults can only happen when transferring strings. Send mes-
sages without strings or receive messages without receive string buffers are
guaranteed not to raise xfer pagefaults.

Generic Programming Interface

System-Call Function:

#include <l4/ipc.h>

MsgTag Ipc (ThreadId to, FromSpecifier, Word Timeouts, ThreadId& from)

MsgTag Lipc (ThreadId to, FromSpecifier, Word Timeouts, ThreadId& from)

Note that message registers have read-once semantics and that returning the message tag implies reading MR 0. The
contents of the message tag is therefore lost if the application does not implicitly store the return value of IPC or LIPC .

Convenience Programming Interface

Derived Functions:

#include <l4/ipc.h>

MsgTag Call (ThreadId to)
{ Call (to, never, never) }

66 IPC

MsgTag Call (ThreadId to, Time SndTimeout, RcvTimeout) [Call Timeouts]
{ Ipc (to, to, Timeouts (SndTimeout, RcvTimeout), –) }

MsgTag Send (ThreadId to)
{ Send (to, never) }

MsgTag Send (ThreadId to, Time SndTimeout) [Send Timeout]
{ Ipc (to, nilthread, Timeouts (SndTimeout, –), –) }

MsgTag Reply (ThreadId to)
{ Send (to, ZeroTime) }

MsgTag Receive (ThreadId from)
{ Receive (from, never) }

MsgTag Receive (ThreadId from, Time RcvTimeout) [Receive Timeout]
{ Ipc (nilthread, from, Timeouts (–, RcvTimeout), –) }

MsgTag Wait (ThreadId& from)
{Wait (never, from) }

MsgTag Wait (Time RcvTimeout, ThreadId& from) [Wait Timeout]
{ Ipc (nilthread, anythread, Timeouts (–, RcvTimeout), from) }

MsgTag ReplyWait (ThreadId to, ThreadId& from)
{ ReplyWait (to, never, from) }

MsgTag ReplyWait (ThreadId to, Time RcvTimeout, ThreadId& from) [ReplyWait Timeout]
{ Ipc (to, anythread, Timeouts (TimePeriod(0), RcvTimeout), from) }

void Sleep (Time t)
{ Set MsgTag (Receive (MyLocalId, t)) }

MsgTag Lcall (ThreadId to)
{ Lipc (to, to, Timeouts (never, never), –) }

MsgTag LreplyWait (ThreadId to, ThreadId& from)
{ Lipc (to, anylocalthread, Timeouts (TimePeriod (0), never), from) }

Support Functions:

#include <l4/ipc.h>

Bool IpcSucceeded (MsgTag t)

Bool IpcFailed (MsgTag t)
Delivers the state of the error indicator (the E bit of MR 0).

Bool IpcPropagated (MsgTag t)

Bool IpcRedirected (MsgTag t)

Bool IpcXcpu (MsgTag t)
Checks if the IPC was propagated/redirected/cross cpu.

Word ErrorCode ()

ThreadId IntendedReceiver ()

IPC 67

ThreadId ActualSender ()
Delivers the error code/intended receiver TCR/actual sender.

void Set Propagation (MsgTag& t)
Sets the propagation bit.

void Set VirtualSender (ThreadId t)
Sets the virtual sender TCR.

Word Timeouts (Time SndTimeout, RcvTimeout)
Delivers a word containing both timeout values.

68 IPC

Chapter 6

Miscellaneous

70 EXCEPTIONHANDLER

6.1 ExceptionHandler [TCR]

An exception handler thread can be installed to receive exception IPCs.

ExceptionHandler

6=nilthread Specifies the exception handler thread. When a thread raises an exception the kernel sends an
exception IPC message on the thread’s behalf to the thread’s exception handler thread and waits
for a response from the exception handler containing the instruction pointer where the thread
should continue execution in MR 1. The format of the exception IPC message is architecture
specific.
The architectural registers of the faulting thread, BR 0, TCRs, and the MRs containing the ex-
ception message are preserved.

=nilthread No exception handler is specified. If an exception is raised the thread is halted and not scheduled
anymore. nilthread is the default value for newly created threads.

Generic Programming Interface

#include <l4/thread.h>

ThreadId ExceptionHandler ()

void Set ExceptionHandler (ThreadId new)
Delivers/sets the exception handler TCR.

COP FLAGS 71

6.2 Cop Flags [TCR]

The coprocessor flags TCR helps the kernel to optimize thread switching for some hardware architectures.

Cop Flags
c7 . . . c0

By resetting a ci-bit to 0, a thread tells the system that it no longer needs coprocessor i. If the
kernel finds ci = 0, it concludes that registers and state of coprocessor i do not have to be saved.
However, the kernel ensures that the coprocessor can not be used as a covert channel between
different address spaces.
Once a thread has reset bit ci it must set ci to 1 before it issues the next operation on coprocessor
i. Otherwise, coprocessor registers and state might be arbitrarily modified while using it.
Note that the ci-bits are write-only. Reading them results in an undefined value. Upon thread
creation, all ci-bits are set to 1.

Generic Programming Interface

#include <l4/thread.h>

void Set CopFlag (Word n)

void Clr CopFlag (Word n)
Sets/clears coprocessor flag cn.

72 PROCESSORCONTROL

6.3 PROCESSORCONTROL [Privileged Systemcall]

−→Word ProcessorNo Word result
Word InternalFrequency
Word ExternalFrequency
Word voltage

Control the internal frequency, external frequency, or voltage for a system processor.

Input Parameters

ProcessorNo Specifies the processor to control. Number must be a valid index into the processor descriptor
array (see Kernel Interface Page, page 4).

All further input parameters have no effect if the supplied value is −1, ensuring that the corresponding value is not
modified. The following description always refers to values 6= − 1.

InternalFrequency Sets internal frequency for processor to the given value (in kHz).

ExternalFrequency
Sets external frequency for processor to the given value (in kHz).

voltage Sets voltage for processor to the given value (in mV). A value of 0 shuts down the processor.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set if result = 0. Undefined if result 6=0.

= 1 No privilege. Current thread does not have privilege to perform operation.

Note that the active internal and external frequency of all processors are available to all threads via the kernel interface
page.

Pagefaults

No pagefaults will happen.

PROCESSORCONTROL 73

Generic Programming Interface

System-Call Function:

#include <l4/misc.h>

Word ProcessorControl (Word ProcessorNo, InternalFrequency, ExternalFrequency, voltage)

Convenience Programming Interface

Support Functions:

Word ErrorCode ()

Word ErrNoPrivilege

74 MEMORYCONTROL

6.4 MEMORYCONTROL [Privileged Systemcall]

−→Word control Word result
Word attribute0

Word attribute1

Word attribute2

Word attribute3

Set the page attributes of the fpages (MR 0...k) to the attribute specified with the fpage.

Input Parameters

control 0 (26/58) k (6)

k Specifies the highest MR k that holds an fpage to set the attributes. The number of fpages is thus
k + 1.

attributei Specifies the attribute to associate with an fpage. The semantics of the attributei values are
hardware specific, except for the value 0 which specifies default semantics.

FpageList MR 0...k Fpages to be processed.

Fpage MR i
fpage (28/60) 0 0 a (2)

Fpage to change the attributes. A nilpage specifies a no-op.

a selects attributea to be set as the fpages memory attributes.

Output Parameters

result The result is 1 if the operation succeeded, otherwise the result is 0 and the ErrorCode TCR
indicates the failure reason.

ErrorCode [TCR] Set if result = 0. Undefined if result 6=0.

= 1 No privilege. Current thread does not have privilege to perform operation.

= 5 Invalid parameter. Invalid or unsupported memory attribute.

Pagefaults

No pagefaults will happen.

MEMORYCONTROL 75

Generic Programming Interface

System-Call Function:

#include <l4/misc.h>

Word MemoryControl (Word control, Word& attributes[4])

Word DefaultMemory

Convenience Programming Interface

Derived Functions:

#include <l4/misc.h>

Word Set PageAttribute (Fpage f, Word attribute)
{Word attributes[4]; attributes[0] = attribute; Set Rights(f, 0); LoadMR (0, f);
MemoryControl (0, &attributes); }

Word Set PagesAttributes (Word n, Fpage& [n] fpages, Word& [4] attributes)
{ LoadMRs (0, n, fpages); MemoryControl (n− 1, attributes); }

Support Functions:

Word ErrorCode ()

Word ErrNoPrivilege

Word ErrInvalidParam

76 MEMORYCONTROL

Chapter 7

Protocols

78 THREAD START PROTOCOL

7.1 Thread Start Protocol [Protocol]

Newly created active threads start immediately by receiving a message from its pager. The received message contains the
initial instruction-pointer and stack-pointer for the thread.

From Pager
Initial SP (32/64) MR 2

Initial IP (32/64) MR 1

0 (16/48) 0 (4) t = 0 (6) u = 2 (6) MR 0

INTERRUPT PROTOCOL 79

7.2 Interrupt Protocol [Protocol]

Interrupts are delivered as an IPC call to the interrupt handler thread (i.e., the pager of the interrupt thread). The interrupt
is disabled until the interrupt handler sends a re-enable message.

From Interrupt Thread

−1 (12/44) 0 (4) 0 (4) t = 0 (6) u = 0 (6) MR 0

To Interrupt Thread

0 (16/48) 0 (4) t = 0 (6) u = 0 (6) MR 0

80 PAGEFAULT PROTOCOL

7.3 Pagefault Protocol [Protocol]

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (32/64) MR 2

fault address (32/64) MR 1

−2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

rwx The rwx bits specify the fault reason:

r read fault
w write fault
x execute fault

A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, x is never set. Read and execute accesses will both be
reported by the r bit.

Acceptor [BR0]
0 (22/54) s = 1 (6) 0 0 0 0 BR 0

The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.

From Pager

MapItem / GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

PREEMPTION PROTOCOL 81

7.4 Preemption Protocol [Protocol]

From Preempted Thread

Clock /2(32/64)
(32/64) MR 2

Clock mod2(32/64)
(32/64) MR 1

−3 (12/44) 0 (4) 0 (4) t = 0 (6) u = 2 (6) MR 0

The preemption message contains the system clock when the thread was preempted. The pre-
emption message is sent with relative timeout 0. If the message can not be delivered (e.g., due
to timeouts) the message is dropped.

82 EXCEPTION PROTOCOL

7.5 Exception Protocol [Protocol]

The exception IPC contains a label, the faulting instruction pointer, and additional architecture specific exception words.
The reply from the exception handler contains a label, an instruction pointer where the faulting thread is resumed, and an
optional number of additional architecture specific words.

Note that the stack pointer is not explicitly specified to allow architecture specific optimizations.

To Exception Handler

exception word k−1 (32/64) MR k+1

...
...

exception word 0 (32/64) MR 2

IP (32/64) MR 1

label (12/44) 0 (4) 0 (4) t = 0 (6) u = k (6) MR 0

k Number of exception words.

label specifies the exception type.

= − 4 System exceptions are defined for all architectures.

= − 5 Architecture specific exceptions.

From Exception Handler

exception reply word k−1 (32/64) MR k+1

...
...

exception reply word 0 (32/64) MR 2

IP (32/64) MR 1

0 (16/48) 0 (4) t = 0 (6) u = k (6) MR 0

k Number of exception reply words.

IP Location where execution is resumed in the faulting thread.

SIGMA0 RPC PROTOCOL 83

7.6 Sigma0 RPC protocol [Protocol]

σ0 is the initial address space. Although it is not part of the kernel, its basic protocol is defined with the kernel. Specific
σ0 implementations may extend this protocol.

The address space σ0 is idempotent, i.e., all virtual addresses in this address space are identical to the corresponding
physical address. Note that pages requested from σ0 continue to be mapped idempotently if the receiver specifies its
complete address space as receive fpage.

σ0 gives pages to the kernel and to arbitrary tasks, but only once. The idea is that all pagers request the memory they
need in the startup phase of the system so that afterwards σ0 has exhausted all its memory. Further requests will then
automatically be denied.

Kernel Protocol

To σ0 ∼ (32/64) MR 2

requested fpage (32/64) MR 1

−6 (12/44) 0 (4) 0 (4) t = 0 (6) u = 2 (6) MR 0

requested fpage
−1 (22/54) s (6) 0 r w x

s = 0 Kernel requests the amount of memory recommended by σ0 for kernel use (pagetable and other
kernel-internal data).

s 6= 0 Kernel requests an fpage of size 2s. The fpage can be located at an arbitrary position but must
contain ordinary memory. If a free fpage of size 2s is available, it is granted to the kernel.

rwx The rwx bits are ignored. σ0 always grants fpages with maximum access rights to the kernel.

From σ0

Kernel memory recommendation

0 (32/64) MR 2

amount (32/64) MR 1

0 (16/48) 0 (4) t = 0 (6) u = 2 (6) MR 0

amount Amount of memory recommended for kernel use (in bytes).

Grant Response

GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

84 SIGMA0 RPC PROTOCOL

Grant Reject
nilpage (32/64) MR 2

0 (28/60) 1 0 1 0 MR 1

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

User Protocol

To σ0 requested attributes (32/64) MR 2

requested fpage (32/64) MR 1

−6 (12/44) 0 (4) 0 (4) t = 0 (6) u = 2 (6) MR 0

requested fpage
b/210

(22/54) s (6) 0 r w x

σ0 deals with fpages of arbitrary size. A successful response from σ0 contains an fpage of
physically contiguous memory.

b 6= − 1 Requests the specific fpage with base address b and size 2s. If the fpage is neither owned by the
kernel nor by a user thread (not even partially), the requested fpage is mapped to the requestor’s
address space and the fpage is marked as owned by the requesting thread (i.e., fpage is not
marked as being owned by the address space in which thread resides). Any fpage not belonging
to reserved memory (see page 87) can be requested. If the requested fpage is already owned by
the requestor only the page attributes are modified. No new mapping operation happens.

b = − 1 Requests an fpage of size 2s but with arbitrary address. If a free fpage of size 2s is available,
it is mapped to the requestor’s address space and marked as owned by the requesting thread
(i.e., fpage is not marked as being owned by the address space in which thread resides). σ0 is
free to use the requested-attribute for choosing a best fitting page. Only fpages belonging to
conventional memory (see page 87) are considered free and handed out upon such anonymous
requests.

rwx The rwx bits are ignored. σ0 always maps fpages with maximum access rights to the requestor.

requested attributes

= 0 The page is requested with default attributes.

6= 0 The page is requested with some architecture dependent attributes.

From σ0

Map Response

MapItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

SIGMA0 RPC PROTOCOL 85

Map Reject
nilpage (32/64) MR 2

0 (28/60) 1 0 0 0 MR 1

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

σ0 responds with a map reject message if the page is reserved (i.e., kernel space) or already
mapped to a different thread, or if memory is exhausted.

Pagefault Protocol

σ0 also understands the pagefault protocol (see page 80) and will convert pagefault requests into σ0 user protocol requests.
Further, only memory marked as conventional memory (see page 87) can be requested using the pagefault protocol. Any
non-conventional memory (including boot loader specific memory) must be requested explicitly using the regular σ0

protocol.

Incoming pagefault message

faulting user-level IP (32/64) MR 2

fault address (32/64) MR 1

−2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

Converted pagefault message

0 (32/64) MR 2

fault address/210
(22/54) s (6) 0 0 0 0 MR 1

−6 (12/44) 0 (4) 0 (4) t = 0 (6) u = 2 (6) MR 0

s The minimum supported page size as defined by the PageInfo field in the kernel interface page
(see page 3).

86 GENERIC BOOTING

7.7 Generic Booting [Protocol]

Machine-specific boot procedures are described on pages 103 ff.
After booting, L4 initializes itself. It generates the basic address space-servers σ0, σ1 and a root server which is

intended to boot the higher-level system.
σ0, σ1 and the root server are user-level servers and not part of the pure kernel. The predefined ones can be replaced by

modifying the following table in the L4 image before starting L4. An empty area specifies that the corresponding server
should not be started. Note, that σ0 is a mandatory service. The kernel debugger kdebug is also not part of the kernel and
can accordingly be replaced by modifying the table.

MemoryDesc MemDescPtr

∼ BootInfo ∼ +B0 / +160

∼ +A0 / +140

∼ +90 / +120

∼ +80 / +100

∼ +70 / +E0

∼ +60 / +C0

Kdebug.config1 Kdebug.config0 MemoryInfo ∼ +50 / +A0

root server.high root server.low root server.IP root server.SP +40 / +80

σ1.high σ1.low σ1.IP σ1.SP +30 / +60

σ0.high σ0.low σ0.IP σ0.SP +20 / +40

Kdebug.high Kdebug.low Kdebug.entry Kdebug.init +10 / +20

∼ API Version ∼(0/32) ’K’ 230 ’4’ ’L’ +0

+C / +18 +8 / +10 +4 / +8 +0

The addresses are offsets relative to the configuration page’s base address. The configuration page is located at a page
boundary and can be found by searching for the magic “L4µK” starting at the load address. The IP and SP values
however, are absolute addresses. The appropriate code must be loaded at these addresses before L4 is started.

IP Physical address of a server’s initial instruction pointer (start).

SP Physical address of a server’s initial stack pointer (stack bottom).

Kdebug.init Physical address of kdebug’s initialization routine.

GENERIC BOOTING 87

Kdebug.entry Physical address of kdebug’s exception handler entry point.

Kdebug.low Physical address of first byte of kernel debugger. Must be page aligned.

Kdebug.high Physical address of last byte of kernel debugger. Must be the last byte in page.

Kdebug.config Configuration fields which can be freely interpreted by the kernel debugger. The specific seman-
tics of these fields are provided with the specific kernel debuggers.

BootInfo Prior to kernel initialization a boot loader can write an arbitrary value into this field. Post-
initialization code, e.g., a root server can later read the field. Its value is neither changed nor
interpreted by the kernel. This is the generic method for passing system information across
kernel initialization.

MemoryInfo
MemDescPtr (16/32) n (16/32)

MemDescP tr Location of first memory descriptor (as an offset relative to the configuration page’s base ad-
dress). Subsequent memory descriptors are located directly following the first one. For memory
descriptors that specify overlapping memory regions, later descriptors take precedence over ear-
lier ones.

n Initially equals the number of available memory descriptors in the configuration page. Before
starting L4 this number must be initialized to the number of inserted memory descriptors.

MemoryDesc
high/210

(22/54) ∼ (10) +4 / +8

low/210
(22/54) v ∼ t (4) type (4) +0

Memory descriptors should be initialized before starting L4. The kernel may after startup insert
additional memory descriptors or modify existing ones (e.g., for reserved kernel memory).

high Address of last byte in memory region. The ten least significant address bits are all hardwired
to 1.

low Address of first byte in memory region. The ten least significant address bits are all hardwired
to 0.

v Indicates whether memory descriptor refers to physical memory (v = 0) or virtual memory
(v = 1).

type Identifies the type of the memory descriptor.

Type Description
0x0 Undefined
0x1 Conventional memory
0x2 Reserved memory (i.e., reserved by kernel)
0x3 Dedicated memory (i.e., memory not available to user)
0x4 Shared memory (i.e., available to all users)
0xE Defined by boot loader
0xF Architecture dependent

t Identifies the precise type for boot loader specific or architecture dependent memory descriptors.

88 GENERIC BOOTING

type = 0xE
The type of the memory descriptor is dependent on the bootloader. The t field specifies the exact
semantics. Refer to boot loader specification for more info.

type = 0xF
The type of the memory descriptor is architecture dependent. The t field specifies the exact
semantics. Refer to architecture specific part for more info (see page 117).

type 6= 0xE, type 6= 0xF
The type of the memory descriptor is solely defined by the type field. The content of the t field
is undefined.

Appendix A

IA-32 Interface

90 VIRTUAL REGISTERS

A.1 Virtual Registers [ia32]

Thread Control Registers (TCRs)

TCRs are implemented as part of the ia32-specific user-level thread control block (UTCB). The address of the current
thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread via THREAD-
CONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation parameter when
invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be loaded through a
machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must
not be accessed, even if they are physically accessible. ThreadWord0 and ThreadWord1 are free to be used by systems
software (e.g., IDL compilers). The kernel associates no semantics with these words.

∼ (32) ←− UTCB address

...
...

ThreadWord 0 (32) –16

ThreadWord 1 (32) –20

VirtualSender/ActualSender (32) –24

IntendedReceiver (32) –28

XferTimeouts (32) –32

ErrorCode (32) –36

∼ (16) cop flags (8) preempt flags (8) –40

ExceptionHandler (32) –44

Pager (32) –48

UserDefinedHandle (32) –52

ProcessorNo (32) –56

MyGlobalId (32) –60

MyLocalId = UTCB address (32) gs:[0]

The TCR MyLocalId is not part of the UTCB. On ia32 it is identical with the UTCB address and
can be loaded from memory location gs:[0].

VIRTUAL REGISTERS 91

Message Registers (MRs)

Memory-mapped MRs are implemented as part of the ia32-specific user-level thread control block (UTCB). The address
of the current thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread
via THREADCONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation
parameter when invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be
loaded through a machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

MR 0 is always mapped to a general register. MR 1 and MR 2 are mapped to general registers when reading a received
message; in all other cases, MR 1 and MR 2 are mapped to memory locations. MR 3...63 are always mapped to memory.

MR 0 ESI

MR 1 (only for msg receive)

EBX

MR 2 (only for msg receive)

EBP

MR 1...63 [UTCB fields]

MR 63 (32) +252

...
...

MR 4 (32) +16

MR 3 (32) +12

MR 2 (except for msg receive) (32) +8

MR 1 (except for msg receive) (32) ←− UTCB address + 4

Buffer Registers (BRs)

BRs are implemented as part of the ia32-specific user-level thread control block (UTCB). The address of the current
thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread via THREAD-
CONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation parameter when
invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be loaded through a
machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

92 VIRTUAL REGISTERS

BR 0...32 [UTCB fields]

∼ (32) ←− UTCB address

...
...

BR 0 (32) –64

BR 1 (32) –68

...
...

BR 32 (32) –196

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located at UTCB address. . . UTCB address + 3. The application can
use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the memory contents
within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

SYSTEMCALLS 93

A.2 Systemcalls [ia32]

The system-calls which are invoked by the call instruction take the target of the calls from the system-call link fields in
the kernel interface page (see page 2). Each system-call link specifies an address relative to the kernel interface page’s
base address. An application may use instructions other than call to invoke the system-calls, but must ensure that a valid
return address resides on the stack.

KERNELINTERFACE [Slow Systemcall]

− KernelInterface→

lock: nop

– EAX EAX base address
– ECX ECX API Version
– EDX EDX API Flags
– ESI ESI Kernel ID
– EDI EDI ≡
– EBX EBX ≡
– EBP EBP ≡
– ESP ESP ≡

EXCHANGEREGISTERS [Systemcall]

− Exchange Registers→

call ExchangeRegisters

dest EAX EAX result
control ECX ECX control

SP EDX EDX SP
IP ESI ESI IP

FLAGS EDI EDI FLAGS
UserDefinedHandle EBX EBX UserDefinedHandle

pager EBP EBP pager
– ESP ESP ≡

“FLAGS” refers to the user-modifiable ia32 processor flags that are held in the EFLAGS register.

THREADCONTROL [Privileged Systemcall]

− Thread Control→

call ThreadControl

dest EAX EAX result
Pager ECX ECX ∼

Scheduler EDX EDX ∼
SpaceSpecifier ESI ESI ∼
UtcbLocation EDI EDI ∼

– EBX EBX ∼
– EBP EBP ∼
– ESP ESP ≡

SYSTEMCLOCK [Systemcall]

− SystemClock→

call SystemClock

– EAX EAX clock 0. . . 31
– ECX ECX ∼
– EDX EDX clock 32. . . 63
– ESI ESI ∼
– EDI EDI ∼
– EBX EBX ≡
– EBP EBP ≡
– ESP ESP ≡

94 SYSTEMCALLS

THREADSWITCH [Systemcall]

− ThreadSwitch→

call ThreadSwitch

dest EAX EAX ≡
– ECX ECX ≡
– EDX EDX ≡
– ESI ESI ≡
– EDI EDI ≡
– EBX EBX ≡
– EBP EBP ≡
– ESP ESP ≡

SCHEDULE [Systemcall]

− Schedule→

call Schedule

dest EAX EAX result
prio ECX ECX ∼

time control EDX EDX time control
processor control ESI ESI ∼

preemption control EDI EDI ∼
– EBX EBX ∼
– EBP EBP ∼
– ESP ESP ≡

IPC [Systemcall]

− Ipc→

call Ipc

to EAX EAX from
Timeouts ECX ECX ∼

FromSpecifier EDX EDX ∼
MR 0 ESI ESI MR 0

UTCB EDI EDI ≡
– EBX EBX MR 1

– EBP EBP MR 2

– ESP ESP ≡

LIPC [Systemcall]

− Lipc→

call Lipc

to EAX EAX from
Timeouts ECX ECX ∼

FromSpecifier EDX EDX ∼
MR 0 ESI ESI MR 0

UTCB EDI EDI ≡
– EBX EBX MR 1

– EBP EBP MR 2

– ESP ESP ≡

UNMAP [Systemcall]

− Unmap→

call Unmap

control EAX EAX ∼
– ECX ECX ∼
– EDX EDX ∼

MR 0 ESI ESI MR 0

UTCB EDI EDI ≡
– EBX EBX ∼
– EBP EBP ∼
– ESP ESP ≡

SYSTEMCALLS 95

SPACECONTROL [Privileged Systemcall]

− Space Control→

call SpaceControl

SpaceSpecifier EAX EAX result
control ECX ECX control

KernelInterfacePageArea EDX EDX ∼
UtcbArea ESI ESI ∼

Redirector EDI EDI ∼
– EBX EBX ∼
– EBP EBP ∼
– ESP ESP ≡

PROCESSORCONTROL [Privileged Systemcall]

− Processor Control→

call ProcessorControl

ProcessorNo EAX EAX result
InternalFrequency ECX ECX ∼
ExternalFrequency EDX EDX ∼

voltage ESI ESI ∼
– EDI EDI ∼
– EBX EBX ∼
– EBP EBP ∼
– ESP ESP ≡

MEMORYCONTROL [Privileged Systemcall]

−Memory Control→

call MemoryControl

control EAX EAX result
attribute0 ECX ECX ∼
attribute1 EDX EDX ∼

MR 0 ESI ESI ∼
UTCB EDI EDI ∼

attribute2 EBX EBX ∼
attribute3 EBP EBP ∼

– ESP ESP ≡

96 KERNEL FEATURES

A.3 Kernel Features [ia32]

The ia32 architecture supports the following kernel feature descriptors in the kernel interface page (see page 5).

String Feature

“smallspaces” Kernel has small address spaces enabled.

IO PORTS 97

A.4 IO Ports [ia32]

IO Fpages

On IA-32 processors, IO-ports are handled as fpages. IO fpages can be mapped, granted, and unmapped like memory
fpages. Their minimal granularity is 1. An IO-fpage of size 2s′

has a 2s′
-aligned base address p, i.e. p mod 2s′

=0. An
fpage with base port address p and size 2s′

is denoted as described below.

IO fpage (p, 2s′
)

p (16) s’ (6) s = 2 (6) 0 1 1 0

IO-ports can only be mapped idempotently, i.e., physical port x is either mapped at IO address x in the task’s IO address
space, or it is not mapped at all. There are no distinct rights associated with IO ports, i.e., a task can be granted either
read- and write-access to an IO port, ore none at all.

IO Pagefault Protocol

A thread generating an IO port exception will cause the kernel to transparently generate an IO-pagefault IPC to the
faulting thread’s pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (32) MR 2

faulting port (16) size (6) s = 2 (6) 0 1 1 0 MR 1

−8 (12) 0 1 1 0 0 (4) t = 0 (6) u = 2 (6) MR 0

Acceptor [BR0]
0 (16) 16 (6) s = 2 (6) 0 0 0 0 BR 0

The acceptor covers the complete IO-address space. The kernel accepts mappings or grants into
this region on behalf of the faulting thread. The received message is discarded.

Generic Programming Interface

#include <l4/arch.h>

Fpage IoFpage (Word BasePort, int FpageSize)

Fpage IoFpageLog2 (Word BasePort, int Log2FpageSize <= 16)
Delivers an IO fpage with the specified location and size.

Word IoFpagePort (Fpage f)

Word IoFpageSize (Fpage f)

Word IoFpageSizeLog2 (Fpage f)
Delivers port/size of specified IO fpage.

Bool IsIoFpage (Fpage f)
Delivers true if fpage is an IO fpage.

98 SPACE CONTROL

A.5 Space Control [ia32]

The SPACECONTROL system call has an architecture dependent control parameter to specify various address space char-
acteristics. For ia32, the control parameter has the following semantics.

Input Parameter

control s 0 (23) small (8)

s A value of 1 indicates the intention to change the small address space number for the specified
address space. The small space number will remain unchanged if s = 0.

small If s = 1, sets the small address space number for the specified address space. Small address
space numbers from 1 to 255 are available. A value of 0 indicates a regular large address space.
An assigned small space number is effective on all CPUs in an SMP system.
The position (pos) of the least significant bit of small indicates the size of the small space by the
following formula: size = 2pos ∗ 4 MB. After removing the least significant bit, the remaining
bits of small indicate the location of the space within a 512 MB region using the following
formula: location = small ∗ 2 MB. Setting the small space number fails if the specified region
overlaps with an already existing one.
The small field is ignored if s = 0, or if the kernel does not support small spaces (see Kernel
Features, page 96).

Output Parameter

control e 0 (23) small (8)

e Indicates if the change of small space number was effective (e = 1). Undefined if s = 0 in the
input parameter.

small The old value for the small space number. A value of 0 is possible even if the space has pre-
viously been put into a small address space. An implicit change to small space number 0 can
happen if a thread within the space accesses memory beyond the specified small space size.

Generic Programming Interface

#include <l4/space.h>

Word LargeSpace

Word SmallSpace (Word location, size)
Delivers a small space number with the specified location and size (both in MB). It is assumed
that size = 2p ∗ 4 for some value p < 8.

CACHEABILITY HINTS 99

A.6 Cacheability Hints [ia32]

String items can specify cacheability hints to the kernel (see page 56). For ia32, the cacheability hints have the following
semantics.

hh = 00 Use the processor’s default cacheability strategy. Typically, cache lines are allocated for data
read and written (assuming that the processor’s default strategy is write-back and write-allocate).

hh = 01 Allocate cache lines in the entire cache hierarchy for data read or written.

hh = 10 Do not allocate new cache lines (entire cache hierarchy) for data read or written.

hh = 11 Allocate only new L1 cache line for data read or written. Do not allocate cache lines in lower
cache hierarchies.

Convenience Programming Interface

#include <l4/ipc.h>

CacheAllocationHint UseDefaultCacheLineAllocation

CacheAllocationHint AllocateNewCacheLines

CacheAllocationHint DoNotAllocateNewCacheLines

CacheAllocationHint AllocateOnlyNewL1CacheLines

100 MEMORY ATTRIBUTES

A.7 Memory Attributes [ia32]

The ia32 architecture in general supports the following memory attributes values.

attribute value
Default 0
Write Back 1
Write Through 2
Uncacheable 4
Write Combining 5
Write Protected 8

Note that some attributes are only supported on certain processors. See the “IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 3: System Programming Guide” for the semantics of the memory attributes and which processors
they are supported on.

Generic Programming Interface

#include <l4/misc.h>

Word DefaultMemory

Word WriteBackMemory

Word WriteThroughMemory

Word UncacheableMemory

Word WriteCombiningMemory

Word WriteProtectedMemory

EXCEPTION MESSAGE FORMAT 101

A.8 Exception Message Format [ia32]

To Exception Handler

EAX (32) MR 12

ECX (32) MR 11

EDX (32) MR 10

EBX (32) MR 9

ESP (32) MR 8

EBP (32) MR 7

ESI (32) MR 6

EDI (32) MR 5

ErrorCode (32) MR 4

ExceptionNo (32) MR 3

EFLAGS (32) MR 2

EIP (32) MR 1

−4/− 5 (12/44) 0 (4) 0 (4) t = 0 (6) u = 12 (6) MR 0

#PF (page fault), #MC (machine check exception), and some #GP (general protection), #SS (stack segment fault), and
#NM (no math coprocessor) exceptions are handled by the kernel and therefore do not generate exception messages.

Note that executing an INT n instructions in 32-bit mode will always raise a #GP (general protection). The exception
handler may interpret the error code (8n + 2, see processor manual) and emulate the INT n accordingly.

102 PROCESSOR MIRRORING

A.9 Processor Mirroring [ia32]

Segments

L4 uses a flat (unsegmented) memory model. There are only three segments available: user space, a read/write segment,
user space exec, an executable segment, and utcb address, a read-only segment. Both user space and user space exec
cover (at least) the complete user-level address space. Utcb address covers only enough memory to hold the UTCB
address.

The values of segment selectors are undefined. When a thread is created, its segment registers SS, DS, ES and FS
are initialized with user space, GS with utcb address, and CS with user space exec. Whenever the kernel detects a
general protection exception and the segment registers are not loaded properly, it reloads them with the above mentioned
selectors. From the user’s point of view, the segment registers cannot be modified.

However, the binary representation of user space and user space exec may change at any point during program exe-
cution. Never rely on any particular value.

Furthermore, the LSL (load segment limit) machine instruction may deliver wrong segment limits, even floating ones.
The result of this instruction is always undefined.

Debug Registers

User-level debug registers exist per thread. DR0. . . 3, DR6 and DR7 can be accessed by the machine instructions
mov n,DRx and mov DRx,r. However, only task-local breakpoints can be activated, i.e., bits G0. . . 3 in DR7 cannot be
set. Breakpoints operate per thread. Breakpoints are signaled as #DB exception (INT 1).

Note that user-level breakpoints are suspended when kernel breakpoints are set by the kernel debugger.

Model-Specific Registers

All privileged threads in the system have read and write access to all the Model-Specific Registers (MSRs) of the CPU.
Modification of some MSRs may lead to undefined system behavior. Any access to an MSR by an unprivileged thread
will raise an exception.

BOOTING 103

A.10 Booting [ia32]

PC-compatible Machines

L4 can be loaded at any 16-byte-aligned location beyond 0x1000 in physical memory. It can be started in real mode
or in 32-bit protected mode at address 0x100 or 0x1000 relative to its load address. The protected-mode conditions are
compliant to the Multiboot Standard Version 0.6.

Start Preconditions
Real Mode 32-bit Protected Mode

load base (L) L≥ 0x1000, 16-byte aligned L≥ 0x1000
load offset (X) X = 0x100 or X = 0x1000 X = 0x100 or X = 0x1000

Interrupts disabled disabled
Gate A20 ∼ open
EFLAGS I=0 I=0, VM=0

CR0 PE=0 PE=1, PG=0
(E)IP X L + X

CS L/16 0, 4GB, 32-bit exec
SS,DS,ES ∼ 0, 4GB, read/write

EAX ∼ 0x2BADB002
EBX ∼ ∗P

〈P + 0〉 ∼ OR 1
〈P + 4〉 n/a below 640 K mem in K
〈P + 8〉 beyond 1M mem in K

all remaining registers & flags
(general, floating point, ∼ ∼

ESP, xDT, TR, CRx, DRx)

L4 relocates itself to 0x1000, enters protected mode if started in real mode, enables paging and initializes itself.

104 BOOTING

Appendix B

IA-64 Interface

106 VIRTUAL REGISTERS

B.1 Virtual Registers [ia64]

Thread Control Registers (TCRs)

TCRs are mapped to memory locations. They are implemented as part of the ia64-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB will not change over the lifetime of the thread. (In fact,
the ia64 UTCB address is identical to the thread’s local ID.) Register ar.k6 always contains the UTCB address of the
current thread. UTCBs of other threads must not be accessed, even if they are physically accessible. ThreadWord0 and
ThreadWord1 are free to be used by systems software (e.g., IDL compilers). The kernel associates no semantics with
these words.

ThreadWord 1 (64) +352

ThreadWord 0 (64) +344

ErrorCode (64) +72

VirtualSender/ActualSender (64) +64

IntendedReceiver (64) +56

XferTimeouts (64) +48

∼ (48) cop flags (8) preempt flags (8) +40

ExceptionHandler (64) +32

Pager (64) +24

UserDefinedHandle (64) +16

ProcessorNo (64) ←− UTCB address + 8

MyLocalId = UTCB address (64) ar.k6

MyGlobalId (64) ar.k5

Message Registers (MRs)

Memory-mapped MRs are implemented as part of the ia64-specific user-level thread control block (UTCB). The address
of the current thread’s UTCB will not change over the lifetime of the thread. (In fact, the ia64 UTCB address is identical
to the thread’s local ID.) Register ar.k6 always contains the UTCB address of the current thread. UTCBs of other threads
must not be accessed, even if they are physically accessible.

MR 0...7 are mapped to the eight first output registers on the register stack. The exact location of the first eight message
registers therefore depends on the configuration of the current frame marker (CFM). MR 8...63 are mapped to memory. It
is valid to configure less than eight output registers in the current register frame if a message to be transferred spans less
than eight message registers. The number of message registers must not exceed the number of output registers, however.

VIRTUAL REGISTERS 107

MR 0...7 MR 7 out7

MR 6 out6

MR 5 out5

MR 4 out4

MR 3 out3

MR 2 out2

MR 1 out1

MR 0 out0

MR 8...63 [UTCB fields]

MR 63 +888

...
...

MR 9 +456

MR 8 ←− UTCB address + 448

Buffer Registers (BRs)

BRs are implemented as part of the ia64-specific user-level thread control block (UTCB). The address of the current
thread’s UTCB will not change over the lifetime of the thread. (In fact, the ia64 UTCB address is identical to the thread’s
local ID.) Register ar.k6 always contains the UTCB address of the current thread. UTCBs of other threads must not be
accessed, even if they are physically accessible.

BR 0...32 [UTCB fields]

BR 32 +336

...
...

BR 1 +88

BR 0 ←− UTCB address + 80

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located at UTCB address + 384. . . UTCB address + 447. The
application can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the
memory contents within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

108 PAL AND SAL ACCESS

B.2 PAL and SAL Access [ia64]

The microkernel provides special system-calls for accessing Processor Abstraction Level (PAL) and System Abstraction
Layer (SAL) procedures. The location of the additional system-call links in the kernel interface page are as follows:

Location System-call
Kernel Interface Page + 0x220 PAL CALL
Kernel Interface Page + 0x228 SAL CALL

Generic Programming Interface

System-Call Function:

#include <l4/arch.h>

Word PAL Call (Word idx, a1, a2, a3, Word& r1, r2, r3)
Invoke the PAL procedure specified by idx. a1. . . a3 are the arguments to the PAL procedure.
r1. . . r3 are the return values. The system-call returns the status of the procedure invocation. See
the “Intel Itanium Architecture Software Developer’s Manual, Volume 2: System Architecture”
for the possible values of idx, and the contents of arguments and return values.
As of now, no invocation of PAL procedures is allowed by any user-level thread.

Word SAL Call (Word idx, a1, a2, a3, a4, a5, a6, Word& r1, r2, r3)
Invoke the SAL procedure specified by idx. a1. . . a6 are the arguments to the SAL procedure.
r1. . . r3 are the return values. The system-call returns the status of the procedure invocation. See
the “Itanium Processor Family System Abstraction Layer Specification” for possible values of
idx, and the contents of arguments and return values.
As of now, only the PCI CONFIG READ and PCI CONFIG WRITE procedure calls can be
invoked from a user-level thread.

Convenience Programming Interface

Derived Functions:

#include <l4/arch.h>

Word SAL PCI ConfigRead (Word address, size, Word& value)
Read from the PCI configuration space at address with the indicated word size (1, 2 or 4 bytes).
The read value is returned in value. Return the status of the operation (0 if success).
The operation will only succeed if the address in the PCI configuration space is mapped readable
(see page 114)

Word SAL PCI ConfigWrite (Word address, size, value)
Write value to the PCI configuration space at address with the indicated word size (1, 2 or 4
bytes). Return the status of the operation (0 if success).
The operation will only succeed if the address in the PCI configuration space is mapped writeable
(see page 114).

SYSTEMCALLS 109

B.3 Systemcalls [ia64]

The system-calls which are invoked by the br.call instruction take the target of the calls the from system-call link fields in
the kernel interface page (see page 2). Each system-call link value, v, specifies either an absolute address (if v ≥ 1MB)
or an address relative to the kernel interface page’s base address (if v < 1MB). An application may use instructions
other than br.call to invoke the system-calls, but must ensure that a valid return address resides in the b0 register. For the
IPC and LIPC system-calls the application must additionally ensure that message registers are mapped into input registers
after invoking the system-call (i.e., the output registers if one were to use a br.call instruction).

The system-call definitions below only specify the contents of the general registers. Except for the KERNELINTERFACE,
IPC and LIPC system-calls, the contents of the remaining user accessible registers closely resembles the IA-64 software
calling conventions. More precisely, the register contents of these registers are ignored upon system-call entry, and the
contents after system-call exit are defined as follows:

Floating-point Registers:
f0. . . f1 fixed
f2. . . f5 preserved
f6. . . f15 scratch
f16. . . f127 preserved

Predicate Registers:
p0 fixed
p1. . . p5 preserved
p6. . . p15 scratch
p16. . . p63 preserved

Branch Registers:
b0 system-call return address
b1. . . b5 preserved
b6. . . b7 scratch

Application Registers:
ar.fpsr special (see below)
ar.rnat preserved
ar.unat preserved
ar.pfs scratch
ar.bsp preserved
ar.bspstore preserved
ar.rsc special (see below)
ar.lc preserved
ar.ec preserved
ar.ccv scratch
ar.itc scratch
ar.k0. . . k4 scratch
ar.k5 MyGlobalId
ar.k6 MyLocalId
ar.k7 scratch

The ar.fpsr and ar.rsc registers are special. The second and third status fields of ar.fpsr, and the loadrs field of ar.rsc have
scratch semantics. The remaining fields have preserved semantics.

KERNELINTERFACE [Slow Systemcall]

− KernelInterface→

{ .mlx
(qp) break.m 0x1face
(qp) movl r0 = 0x0 ;;
}

– r1. . . r7 r1. . . r7 ≡
– r8 r8 base address
– r9 r9 API Version
– r10 r10 API Flags
– r11 r11 Kernel ID
– r12. . . r31 r12. . . r31 ≡
– in0. . . in95 in0. . . in95 ≡
– loc0. . . loc95 loc0. . . loc95 ≡
– out0. . . out95 out0. . . out95 ≡

All other registers remain unchanged. A qualifying predicate, qp, can be used to conditionally execute the KERNELIN-
TERFACE system-call.

110 SYSTEMCALLS

EXCHANGEREGISTERS [Systemcall]

− ExchangeRegisters→

br.call b0 = ExchangeRegisters

– r1 r1 ≡
– r2. . . r3 r2. . . r3 ∼
– r4. . . r7 r4. . . r7 ≡
– r8. . . r11 r8. . . r11 ∼
– r12. . . r13 r12. . . r13 ≡

dest r14 r14 result
contol r15 r15 control

SP r16 r16 SP
IP r17 r17 IP

FLAGS r18 r18 FLAGS
UserDefinedHandle r19 r19 UserDefinedHandle

pager r20 r20 pager
– r21. . . r31 r21. . . r31 ∼
– out0. . . out95 out0. . . out95 ∼

THREADCONTROL [Privileged Systemcall]

− ThreadControl→

br.call b0 = ThreadControl

– r1 r1 ≡
– r2. . . r3 r2. . . r3 ∼
– r4. . . r7 r4. . . r7 ≡
– r8 r8 result
– r9. . . r11 r9. . . r11 ∼
– r12. . . r13 r12. . . r13 ≡

dest r14 r14 ∼
SpaceSpecifier r15 r15 ∼

Scheduler r16 r16 ∼
Pager r17 r17 ∼

UtcbLocation r18 r18 ∼
– r19. . . r31 r19. . . r31 ∼
– out0. . . out95 out0. . . out95 ∼

SYSTEMCLOCK [Systemcall]

− SystemClock→

br.call b0 = SystemClock

– r1 r1 ≡
– r2. . . r3 r2. . . r3 ∼
– r4. . . r7 r4. . . r7 ≡
– r8 r8 clock
– r9. . . r11 r9. . . r11 ∼
– r12. . . r13 r12. . . r13 ≡
– r14. . . r31 r14. . . r31 ∼
– out0. . . out95 out0. . . out95 ∼

THREADSWITCH [Systemcall]

− ThreadSwitch→

br.call b0 = ThreadSwitch

– r1 r1 ≡
– r2. . . r3 r2. . . r3 ∼
– r4. . . r7 r4. . . r7 ≡
– r8. . . r11 r8. . . r11 ∼
– r12. . . r13 r12. . . r13 ≡

dest r14 r14 ∼
– r15. . . r31 r15. . . r31 ∼
– out0. . . out95 out0. . . out95 ∼

SYSTEMCALLS 111

SCHEDULE [Systemcall]

− Schedule→

br.call b0 = Schedule

– r1 r1 ≡
– r2. . . r3 r2. . . r3 ∼
– r4. . . r7 r4. . . r7 ≡
– r8 r8 result
– r9 r9 time control
– r10. . . r11 r10. . . r11 ∼
– r12. . . r13 r12. . . r13 ≡

dest r14 r14 ∼
time control r15 r15 ∼

processor control r16 r16 ∼
prio r17 r17 ∼

preemption control r18 r18 ∼
– r19. . . r31 r19. . . r31 ∼
– out0. . . out95 out0. . . out95 ∼

IPC [Systemcall]

− Ipc→

br.call b0 = Ipc

– r1 r1 ≡
– r2. . . r8 r2. . . r8 ∼
– r9 r9 from
– r10. . . r11 r10. . . r11 ∼
– r12 r12 ≡
– r13 r13 ∼

to r14 r14 ∼
FromSpecifier r15 r15 ∼

Timeouts r16 r16 ∼
– r17. . . r31 r17. . . r31 ∼

MR 0 out0 out0 MR 0

MR 1 out1 out1 MR 1

MR 2 out2 out2 MR 2

MR 3 out3 out3 MR 3

MR 4 out4 out4 MR 4

MR 5 out5 out5 MR 5

MR 6 out6 out6 MR 6

MR 7 out7 out7 MR 7

– out8. . . out95 out8. . . out95 ∼

All remaining registers (including application registers) will have scratch semantics over the IPC system-call. Upon entry
to the IPC system-call, the register stack backing store must be able to contain the dirty partition of the register stack.

LIPC [Systemcall]

− Lipc→

br.call b0 = Lipc

– r1 r1 ≡
– r2. . . r8 r2. . . r8 ∼
– r9 r9 from
– r10. . . r11 r10. . . r11 ∼
– r12 r12 ≡
– r13 r13 ∼

to r14 r14 ∼
FromSpecifier r15 r15 ∼

Timeouts r16 r16 ∼
– r17. . . r31 r17. . . r31 ∼

MR 0 out0 out0 MR 0

MR 1 out1 out1 MR 1

MR 2 out2 out2 MR 2

MR 3 out3 out3 MR 3

MR 4 out4 out4 MR 4

MR 5 out5 out5 MR 5

MR 6 out6 out6 MR 6

MR 7 out7 out7 MR 7

– out8. . . out95 out8. . . out95 ∼

112 SYSTEMCALLS

All remaining registers (including application registers) will have scratch semantics over the LIPC system-call. Upon
entry to the LIPC system-call, the register stack backing store must be able to contain the dirty partition of the register
stack.

UNMAP [Systemcall]

− Unmap→

br.call b0 = Unmap

– r1 r1 ≡
– r2. . . r3 r2. . . r3 ∼
– r4. . . r7 r4. . . r7 ≡
– r8. . . r11 r8. . . r11 ∼
– r12. . . r13 r12. . . r13 ≡

control r14 r14 ∼
– r15. . . r31 r15. . . r31 ∼

MR 0 out0 out0 MR 0

MR 1 out1 out1 MR 1

MR 2 out2 out2 MR 2

MR 3 out3 out3 MR 3

MR 4 out4 out4 MR 4

MR 5 out5 out5 MR 5

MR 6 out6 out6 MR 6

MR 7 out7 out7 MR 7

– out8. . . out95 out8. . . out95 ∼

SPACECONTROL [Privileged Systemcall]

− Space Control→

br.call b0 = SpaceControl

– r1 r1 ≡
– r2. . . r3 r2. . . r3 ∼
– r4. . . r7 r4. . . r7 ≡
– r8 r8 result
– r9 r9 control
– r10. . . r11 r10. . . r11 ∼
– r12. . . r13 r12. . . r13 ≡

SpaceSpecifier r14 r14 ∼
control r15 r15 ∼

KernelInterfacePageAra r16 r16 ∼
UtcbArea r17 r17 ∼

Redirector r18 r18 ∼
– r19. . . r31 r19. . . r31 ∼
– out0. . . out95 out0. . . out95 ∼

PROCESSORCONTROL [Privileged Systemcall]

− Processor Control→

br.call b0 = ProcessorControl

– r1 r1 ≡
– r2. . . r3 r2. . . r3 ∼
– r4. . . r7 r4. . . r7 ≡
– r8 r8 result
– r9. . . r11 r9. . . r11 ∼
– r12. . . r13 r12. . . r13 ≡

ProcessorNo r14 r14 ∼
InternalFrequency r15 r15 ∼
ExternalFreqyency r16 r16 ∼

voltage r17 r17 ∼
– r18. . . r31 r18. . . r31 ∼
– out0. . . out95 out0. . . out95 ∼

SYSTEMCALLS 113

MEMORYCONTROL [Privileged Systemcall]

−Memory Control→

br.call b0 = MemoryControl

– r1 r1 ≡
– r2. . . r3 r2. . . r3 ∼
– r4. . . r7 r4. . . r7 ≡
– r8 r8 result
– r9. . . r11 r9. . . r11 ∼
– r12. . . r13 r12. . . r13 ≡

control r14 r14 ∼
attribute0 r15 r15 ∼
attribute1 r16 r16 ∼
attribute2 r17 r17 ∼
attribute3 r18 r18 ∼

– r19. . . r31 r19. . . r31 ∼
MR 0 out0 out0 ∼
MR 1 out1 out1 ∼
MR 2 out2 out2 ∼
MR 3 out3 out3 ∼
MR 4 out4 out4 ∼
MR 5 out5 out5 ∼
MR 6 out6 out6 ∼
MR 7 out7 out7 ∼

– out8. . . out95 out8. . . out95 ∼

PAL CALL [Architecture Specific Systemcall]

− PAL Call→

br.call b0 = PAL Call

– r1 r1 ≡
– r2. . . r3 r2. . . r3 ∼
– r4. . . r7 r4. . . r7 ≡
– r8 r8 status
– r9 r9 ret1
– r10 r10 ret2
– r11 r11 ret3
– r12. . . r13 r12. . . r13 ≡
– r14. . . r27 r14. . . r27 ∼

idx r28 r28 ∼
arg1 r29 r29 ∼
arg2 r30 r30 ∼
arg3 r31 r31 ∼

– out0. . . out95 out0. . . out95 ∼

SAL CALL [Architecture Specific Systemcall]

− SAL Call→

br.call b0 = SAL Call

– r1 r1 ≡
– r2. . . r3 r2. . . r3 ∼
– r4. . . r7 r4. . . r7 ≡
– r8 r8 status
– r9 r9 ret1
– r10 r10 ret2
– r11 r11 ret3
– r12. . . r13 r12. . . r13 ≡
– r14. . . r31 r14. . . r31 ∼

idx out0 out0 ∼
arg1 out1 out1 ∼
arg2 out2 out2 ∼
arg3 out3 out3 ∼
arg4 out4 out4 ∼
arg5 out5 out5 ∼
arg6 out6 out6 ∼

– out7. . . out95 out7. . . out95 ∼

114 PCI CONFIGURATION SPACE

B.4 PCI Configuration Space [ia64]

On ia64 processors, the PCI configuration space is handled as fpages. PCI Config fpages can be mapped, granted, and
unmapped like memory fpages. Their minimal granularity is 256 (i.e., one single device function). A PCI config fpage
of size 2s′

has a 2s′
-aligned base address p, i.e. p mod 2s′

=0. An fpage with base PCI configuration address p and size
2s′

is denoted as described below.

PCI config fpage (p, 2s′
)

p (48) s’ (6) s = 2 (6) 0 r w x

The execute bit of the PCI config fpage is ignored.

Generic Programming Interface

#include <l4/space.h>

Fpage PCIConfigFpage (Word BaseAddress, int FpageSize ≥ 256)

Fpage PCIConfigFpageLog2 (Word BaseAddress, int Log2FpageSize < 64)
Delivers a PCI config fpage with the specified location and size.

CACHEABILITY HINTS 115

B.5 Cacheability Hints [ia64]

String items can specify cacheability hints to the kernel (see page 56). For ia64, the cacheability hints have the following
semantics.

hh = 00 Use the default cacheability strategy. Temporal locality is assumed for all cache levels. That is,
cache lines are allocated on all levels for both data read and written.

hh = 01 No temporal locality is assumed for the first level cache. Temporal locality is assumed for all
lower cache levels. That is, cache lines are allocated on all cache levels below L1 for both data
read and written.

hh = 10 No temporal locality is assumed for the first and second level caches. Temporal locality is
assumed for all lower cache levels. That is, cache lines are allocated on all cache levels below
L2 for both data read and written.

hh = 11 No temporal locality is assumed on any cache level. That is, cache lines are not allocated on any
cache level.

Note that support for cacheability hints is processor dependent. Refer to the processor specification to see what type of
locality hints the processor supports for load and store instructions.

Convenience Programming Interface

#include <l4/ipc.h>

CacheAllocationHint UseDefaultCacheLineAllocation

CacheAllocationHint CacheNonTemporalL1

CacheAllocationHint CacheNonTemporalL2

CacheAllocationHint CacheNonTemporalAllLevels

116 MEMORY ATTRIBUTES

B.6 Memory Attributes [ia64]

The ia64 architecture in general supports the following memory attributes values.

attribute value
Default 0
Write Back 1
Write Coalescing 7
Uncacheable 5
Uncacheable Exported 6
NaT Page 8

Note that some attributes are only supported on certain processors. See the “Intel Itanium Architecture Software Devel-
oper’s Manual, Volume 2: System Architecture” for the semantics of the memory attributes.

Generic Programming Interface

#include <l4/misc.h>

Word DefaultMemory

Word WriteBackMemory

Word WriteCoalescingMemory

Word UncacheableMemory

Word UncacheableExportedMemory

Word NaTPageMemory

MEMORY DESCRIPTORS 117

B.7 Memory Descriptors [ia64]

The following memory descriptors (see page 6) are specific to the ia64 architecture.

t type Description
0x1 0xF ACPI Memory

Generic Programming Interface

#include <l4/kip.h>

Word ACPIMemoryType

118 EXCEPTION MESSAGE FORMAT

B.8 Exception Message Format [ia64]

To be defined.

Appendix C

PowerPC Interface

120 VIRTUAL REGISTERS

C.1 Virtual Registers [powerpc]

Thread Control Registers (TCRs)

TCRs are mapped to memory locations. They are implemented as part of the PowerPC-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB is identical to the thread’s local ID, and is thus immutable. The
UTCB address is provided in the general purpose register R2 at application start. The R2 register must contain the UTCB
address for every system call invocation. UTCB objects of the current thread can be accessed as any other memory object.
UTCBs of other threads must not be accessed, even if they are physically accessible. ThreadWord0 and ThreadWord1
are free to be used by systems software (e.g., IDL compilers). The kernel associates no semantics with these words.

∼ (32) ←− UTCB address

...
...

ThreadWord 0 (32) –16

ThreadWord 1 (32) –20

VirtualSender/ActualSender (32) –24

IntendedReceiver (32) –28

XferTimeouts (32) –32

ErrorCode (32) –36

∼ (16) cop flags (8) preempt flags (8) –40

ExceptionHandler (32) –44

Pager (32) –48

UserDefinedHandle (32) –52

ProcessorNo (32) –56

MyGlobalId (32) –60

MyLocalId = UTCB address (32) R2

The TCR MyLocalId is not part of the UTCB. On PowerPC it is identical with the UTCB address
and can be loaded from register R2.

Message Registers (MRs)

Message registers MR 0 through MR 9 map to the processor’s general purpose register file. The remaining message
registers map to memory locations in the UTCB. MR 10 starts at byte offset 40 in the UTCB, and successive message
registers follow in memory.

VIRTUAL REGISTERS 121

MR 0...9 MR 9 R0

MR 8 R10

MR 7 R9

MR 6 R8

MR 5 R7

MR 4 R6

MR 3 R5

MR 2 R4

MR 1 R3

MR 0 R14

MR 10...63 [UTCB fields]

MR 63 (32) +252

...
...

MR 11 (32) +44

MR 10 (32) ←− UTCB address + 40

Buffer Registers (BRs)

The buffer registers map to memory locations in the UTCB. BR 0 is at byte offset -64 in the UTCB, BR 1 at byte offset
-68, etc.

BR 0...32 [UTCB fields]

∼ (32) ←− UTCB address

...
...

BR 0 (32) –64

BR 1 (32) –68

...
...

BR 32 (32) –196

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located at UTCB address. . . UTCB address + 39. The application
can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the memory contents
within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

122 SYSTEMCALLS

C.2 Systemcalls [powerpc]

The PowerPC system calls are invoked by changing the location of the instruction pointer to the location of the system
call address, with the return address in the link-return (LR) register. The invocation may take place via any mechanism
which changes the instruction pointer location. The precise locations of the system calls are stored in the kernel interface
page (see page 2).

The locations of the system calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the kernel interface page.

The registers defined to survive across system-call invocations (unless otherwise noted) are: R1, R2, R30, R31, and
the floating point registers. All other registers contain return values, are undefined, or may be preserved according to
processor specific rules.

The R2 register must contain the UTCB pointer when invoking all system calls.

PowerPC uses one alternative system call invocation mechanism, for the KERNELINTERFACE system call. This system
call is invoked via the ’tlbia’ instruction, and most registers are preserved across the function call.

KERNELINTERFACE [Slow Systemcall]

− KernelInterface→

tlbia

UTCB R2 R2 ≡
– R3 R3 KIP base address
– R4 R4 API Version
– R5 R5 API Flags
– R6 R6 Kernel ID
– R7 R7 ≡
– R8 R8 ≡
– R9 R9 ≡
– R10 R10 ≡

For this system-call, all registers other than the output registers are preserved. The tlbia instruction encoding is
0x7c0002e4.

EXCHANGEREGISTERS [Systemcall]

− Exchange Registers→

call ExchangeRegisters

UTCB R2 R2 ≡
dest R3 R3 result

control R4 R4 control
SP R5 R5 SP
IP R6 R6 IP

FLAGS R7 R7 FLAGS
UserDefinedHandle R8 R8 UserDefinedHandle

pager R9 R9 pager
– R10 R10 ∼

“FLAGS” refers to the user-modifiable PowerPC processor flags that are held in the MSR register. See the PowerPC
Processor Mirroring section (page 129).

SYSTEMCALLS 123

THREADCONTROL [Privileged Systemcall]

− Thread Control→

call ThreadControl

UTCB R2 R2 ≡
dest R3 R3 result

SpaceSpecifier R4 R4 ∼
Scheduler R5 R5 ∼

Pager R6 R6 ∼
UtcbLocation R7 R7 ∼

– R8 R8 ∼
– R9 R9 ∼
– R10 R10 ∼

SYSTEMCLOCK [Systemcall]

− SystemClock→

call SystemClock

UTCB R2 R2 ≡
– R3 R3 clock 32. . . 63
– R4 R4 clock 0. . . 31
– R5 R5 ∼
– R6 R6 ∼
– R7 R7 ∼
– R8 R8 ∼
– R9 R9 ∼
– R10 R10 ∼

THREADSWITCH [Systemcall]

− ThreadSwitch→

call ThreadSwitch

UTCB R2 R2 ≡
dest R3 R3 ∼

– R4 R4 ∼
– R5 R5 ∼
– R6 R6 ∼
– R7 R7 ∼
– R8 R8 ∼
– R9 R9 ∼
– R10 R10 ∼

SCHEDULE [Systemcall]

− Schedule→

call Schedule

UTCB R2 R2 ≡
dest R3 R3 result

time control R4 R4 time control
processor control R5 R5 ∼

prio R6 R6 ∼
preemption control R7 R7 ∼

– R8 R8 ∼
– R9 R9 ∼
– R10 R10 ∼

124 SYSTEMCALLS

IPC [Systemcall]

− Ipc→

call Ipc

MR 9 R0 R0 MR 9

– R1 R1 ≡
UTCB R2 R2 ≡
MR 1 R3 R3 MR 1

MR 2 R4 R4 MR 2

MR 3 R5 R5 MR 3

MR 4 R6 R6 MR 4

MR 5 R7 R7 MR 5

MR 6 R8 R8 MR 6

MR 7 R9 R9 MR 7

MR 8 R10 R10 MR 8

– R11 R11 ∼
– R12 R12 ∼
– R13 R13 ∼

MR 0 R14 R14 MR 0

to R15 R15 ∼
FromSpecifier R16 R16 from

Timeouts R17 R17 ∼

LIPC [Systemcall]

− Lipc→

call Lipc

MR 9 R0 R0 MR 9

– R1 R1 ≡
UTCB R2 R2 ≡
MR 1 R3 R3 MR 1

MR 2 R4 R4 MR 2

MR 3 R5 R5 MR 3

MR 4 R6 R6 MR 4

MR 5 R7 R7 MR 5

MR 6 R8 R8 MR 6

MR 7 R9 R9 MR 7

MR 8 R10 R10 MR 8

– R11 R11 ∼
– R12 R12 ∼
– R13 R13 ∼

MR 0 R14 R14 MR 0

to R15 R15 ∼
FromSpecifier R16 R16 from

Timeouts R17 R17 ∼

UNMAP [Systemcall]

− Unmap→

call Unmap

MR 9 R0 R0 MR 9

– R1 R1 ≡
UTCB R2 R2 ≡
MR 1 R3 R3 MR 1

MR 2 R4 R4 MR 2

MR 3 R5 R5 MR 3

MR 4 R6 R6 MR 4

MR 5 R7 R7 MR 5

MR 6 R8 R8 MR 6

MR 7 R9 R9 MR 7

MR 8 R10 R10 MR 8

– R11 R11 ∼
– R12 R12 ∼
– R13 R13 ∼

MR 0 R14 R14 MR 0

control R15 R15 ∼

SYSTEMCALLS 125

SPACECONTROL [Privileged Systemcall]

− Space Control→

call SpaceControl

UTCB R2 R2 ≡
SpaceSpecifier R3 R3 result

control R4 R4 control
KernelInterfacePageArea R5 R5 ∼

UtcbArea R6 R6 ∼
Redirector R7 R7 ∼

– R8 R8 ∼
– R9 R9 ∼
– R10 R10 ∼

PROCESSORCONTROL [Privileged Systemcall]

− Processor Control→

call ProcessorControl

UTCB R2 R2 ≡
processor no R3 R3 result
InternalFreq R4 R4 ∼
ExternalFreq R5 R5 ∼

voltage R6 R6 ∼
– R7 R7 ∼
– R8 R8 ∼
– R9 R9 ∼
– R10 R10 ∼

MEMORYCONTROL [Privileged Systemcall]

−Memory Control→

call MemoryControl

MR 9 R0 R0 ∼
– R1 R1 ≡

UTCB R2 R2 ≡
MR 1 R3 R3 result
MR 2 R4 R4 ∼
MR 3 R5 R5 ∼
MR 4 R6 R6 ∼
MR 5 R7 R7 ∼
MR 6 R8 R8 ∼
MR 7 R9 R9 ∼
MR 8 R10 R10 ∼

– R11 R11 ∼
– R12 R12 ∼
– R13 R13 ∼

MR 0 R14 R14 ∼
control R15 R15 ∼

attribute0 R16 R16 ∼
attribute1 R17 R17 ∼
attribute2 R18 R18 ∼
attribute3 R19 R19 ∼

126 MEMORY ATTRIBUTES

C.3 Memory Attributes [powerpc]

The PowerPC architecture supports the following memory/cache attribute values, to be used with the MEMORYCONTROL
system-call:

attribute value
Default 0
Write-through 1
Write-back 2
Caching-inhibited 3
Caching-enabled 4
Memory-global (coherent) 5
Memory-local (not coherent) 6
Guarded 7
Speculative 8

The default attributes enable write-back, caching, and speculation. Only if the kernel is compiled with support for multiple
processors will memory coherency be enabled by default.

The PowerPC architecture places a variety of restrictions on the usage of the memory/cache attributes. Some combina-
tions are meaningless (such as combining write-through with caching-inhibited), or are not permitted and will lead to
undefined behavior (for example, instruction fetching is incompatible with some combinations of attributes). The precise
semantics of the memory/cache access attributes are described in the “Programming Environments Manual For 32-Bit
Implementations of the PowerPC Architecture.”

Before disabling the cache for a page, the software must ensure that all memory belonging to the target page is flushed
from the cache.

Generic Programming Interface

#include <l4/misc.h>

Word DefaultMemory

Word WriteThroughMemory

Word WriteBackMemory

Word CachingInhibitedMemory

Word CachingEnabledMemory

Word GlobalMemory

Word LocalMemory

Word GuardedMemory

Word SpeculativeMemory

EXCEPTION MESSAGE FORMAT 127

C.4 Exception Message Format [powerpc]

System Call Trap

System Call Trap Message to Exception Handler

Flags (32) MR 12

SP (32) MR 11

IP (32) MR 10

R0 (32) MR 9

R10 (32) MR 8

R9 (32) MR 7

R8 (32) MR 6

R7 (32) MR 5

R6 (32) MR 4

R5 (32) MR 3

R4 (32) MR 2

R3 (32) MR 1

-5 (16/48) 0 (4) t = 0 (6) u = 12 (6) MR 0

When user code executes the PowerPC ’sc’ instruction, the kernel delivers the system call trap message to the exception
handler. The kernel preserves only partial user state when handling an ’sc’ instruction. State is preserved similarly to
the SVR4 PowerPC ABI for function calls. The non-volatile registers are R1, R2, R13. . . R31, CR2, CR3, CR4, LR, and
FPSCR. The volatile registers are R0, R3. . . R12, CR0, CR1, CR5. . . CR7, CTR, and XER. Thread virtual registers may
also be clobbered.

Generic Traps

Generic Trap Message To Exception Handler

128 EXCEPTION MESSAGE FORMAT

LocalID (32) MR 6

ErrorCode (32) MR 5

ExceptionNo (32) MR 4

Flags (32) MR 3

SP (32) MR 2

IP (32) MR 1

-5 (16/44) 0 (4) t = 0 (6) u = 6 (6) MR 0

The kernel synthesizes exception messages in response to architecture specific events. Some traps are handled by the
kernel and therefore do not generate exception messages. The kernel preserves all user state, including thread virtual
registers.

PROCESSOR MIRRORING 129

C.5 Processor Mirroring [powerpc]

The kernel will expose the following supervisor instructions to all user level programs via emulation: MFSPR for the
PVR, MFSPR and MTSPR for the DABR and other cpu-specific debug registers.

The kernel will emulate the MFSPR and MTSPR instructions for accessing cpu-specific performance monitor registers
on behalf of privileged tasks. The performance monitor registers are global, and not per-thread.

The EXCHANGEREGISTERS system-call accesses the flags of the processor. The flags map directly to the PowerPC MSR
register. The following bits may be read and modified by user applications: LE, BE, SE, FE0, and FE1. The kernel also
exposes additional cpu-specific bits.

130 BOOTING

C.6 Booting [powerpc]

Apple New World Compatible Machines

L4 must be loaded into memory at the physical location defined by the kernel’s ELF header. It can be started with virtual
addressing enabled or disabled. Execution of L4 must begin at the entry point defined by the kernel’s ELF header.

When entering the kernel, the registers which support in-register file parameter passing, R3–R10 according to the SVR4
ABI, must be cleared for upwards compatibility, except as noted below. All other registers in the register file are undefined
at kernel entry.

The kernel may use OpenFirmware for debug console I/O. To support OpenFirmware I/O, the OpenFirmware virtual
mode client call-back address must be passed to the kernel in register R5, and OpenFirmware must be prepared to handle
client call-backs using virtual addressing. In all other cases, register R5 must be zero.

The boot loader must copy the OpenFirmware device tree to memory, and record its physical location in a memory
descriptor of the kernel interface page. The copy of the device tree must include the package handles of the device tree
nodes

Appendix D

PowerPC64 Interface

132 VIRTUAL REGISTERS

D.1 Virtual Registers [powerpc64]

Thread Control Registers (TCRs)

TCRs are mapped to memory locations. They are implemented as part of the ppc64-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB is identical to the thread’s local ID, and is thus immutable.
Setting the UTCB address of an active thread via THREADCONTROL is similar to deletion and re-creation. There is a
fixed correlation between the UtcbLocation parameter when invoking THREADCONTROL and the UTCB address. The
UTCB address is provided in the abi thread register r13 at application start. UTCB objects of the current thread can
then be accessed as any other memory object. UTCBs of other threads must not be accessed, even if they are physically
accessible. ThreadWord0 and ThreadWord1 are free to be used by systems software (e.g., IDL compilers). The kernel
associates no semantics with these words.

ThreadWord 1 (64) + 88

ThreadWord 0 (64) + 80

∼ (48) cop flags (8) preempt flags (8) +72

ProcessorNo (64) +64

VirtualSender/ActualSender (64) +56

IntendedReceiver (64) +48

ErrorCode (64) +40

XferTimeouts (64) +32

UserDefinedHandle (64) +24

ExceptionHandler (64) +16

Pager (64) +8

MyGlobalId (64) ←− UTCB address

MyLocalId = UTCB address (64) r13

The TCR MyLocalId is not part of the UTCB. On PowerPC64 it is identical with the UTCB
address and can be loaded from register r13.

Message Registers (MRs)

Message registers MR 0 through MR 9 map to local registers in the processor’s general purpose register file for IPC and
LIPC calls, otherwise they are located in the UTCB. The remaining message registers map to memory locations in the
UTCB. MR 0 starts at byte offset 512 in the UTCB, and successive message registers follow in memory.

VIRTUAL REGISTERS 133

MR 0...9 MR 9 r23

MR 8 r22

MR 7 r21

MR 6 r20

MR 5 r19

MR 4 r18

MR 3 r17

MR 2 r16

MR 1 r15

MR 0 r14

MR 0...63 [UTCB fields]

MR 63 (64) +1016

...
...

MR 0 (64) ←− UTCB address + 512

Buffer Registers (BRs)

The buffer registers map to memory locations in the UTCB. BR 0 is at byte offset 248 in the UTCB, BR 1 at byte offset
256, etc.

BR 0...32 [UTCB fields]

BR 32 (64) +504

...
...

BR 1 (64) +256

BR 0 (64) ←− UTCB address + 248

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located at UTCB address + 80. . . UTCB address + 247. The appli-
cation can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the memory
contents within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

134 SYSTEMCALLS

D.2 Systemcalls [powerpc64]

The system-calls which are invoked by the bctrl or instruction take the target of the calls from the system call link fields
in the kernel interface page (see page 2). Each system-call link value specifies an address relative to the kernel interface
page’s base address. One may invoke the system calls with any instruction that branches to the appropriate target, as long
as the return-address is contained in lr.

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the KIP.

The system call definitions below only specify the contexts of the general purpose registers. Except for the KERNELIN-
TERFACE system-call, the contents of user accessible state registers are assumed to be scratched. The floating-point
registers are assumed to be preserved accross system calls.

KERNELINTERFACE [Slow Systemcall]

− KernelInterface→

tlbia

– r0. . . r2 r0. . . r2 ≡
– r3 r3 KIP base address
– r4 r4 API Version
– r5 r5 API Flags
– r6 r6 Kernel ID
– r7. . . r31 r7. . . r31 ≡
– lr lr ≡
– ctr ctr ≡
– cr cr ≡
– xer xer ≡

For this system-call, all registers other than the output registers are preserved.

EXCHANGEREGISTERS [Systemcall]

− Exchange Registers→

bctrl

– r0 r0 ∼
– r1 r1 ≡
– r2 r2 ≡

dest r3 r3 result
control r4 r4 control

SP r5 r5 SP
IP r6 r6 IP

FLAGS r7 r7 FLAGS
UserDefinedHandle r8 r8 UserDefinedHandle

pager r9 r9 pager
isLocal r10 r10 isLocal

– r11, r12 r11, r12 ∼
UTCB r13 r13 UTCB

– r14. . . r29 r14. . . r29 ∼
– r30, r31 r30, r31 ≡
– lr lr ∼

ExchangeRegisters ctr ctr ∼
– cr cr ∼
– xer xer ∼

“FLAGS” refers to the user-modifiable powerpc64 processor flags that are held in the msr register.

SYSTEMCALLS 135

THREADCONTROL [Privileged Systemcall]

− Thread Control→

bctrl

– r0 r0 ∼
– r1 r1 ≡
– r2 r2 ≡

dest r3 r3 result
space r4 r4 ∼

scheduler r5 r5 ∼
pager r6 r6 ∼

UtcbLocation r7 r7 ∼
– r8. . . r12 r8. . . r12 ∼

UTCB r13 r13 UTCB
– r14. . . r29 r14. . . r29 ∼
– r30, r31 r30, r31 ≡
– lr lr ∼

ThreadControl ctr ctr ∼
– cr cr ∼
– xer xer ∼

SYSTEMCLOCK [Systemcall]

− SystemClock→

bctrl

– r0 r0 ∼
– r1 r1 ≡
– r2 r2 ≡
– r3 r3 clock
– r4. . . r12 r4. . . r12 ∼

UTCB r13 r13 UTCB
– r14. . . r29 r14. . . r29 ∼
– r30, r31 r30, r31 ≡
– lr lr ∼

SystemClock ctr ctr ∼
– cr cr ∼
– xer xer ∼

THREADSWITCH [Systemcall]

− ThreadSwitch→

bctrl

– r0 r0 ∼
– r1 r1 ≡
– r2 r2 ≡

dest r3 r3 ∼
– r4. . . r12 r4. . . r12 ∼

UTCB r13 r13 UTCB
– r14. . . r29 r14. . . r29 ∼
– r30, r31 r30, r31 ≡
– lr lr ∼

ThreadSwitch ctr ctr ∼
– cr cr ∼
– xer xer ∼

136 SYSTEMCALLS

SCHEDULE [Systemcall]

− Schedule→

bctrl

– r0 r0 ∼
– r1 r1 ≡
– r2 r2 ≡

dest r3 r3 result
time control r4 r4 time control

processor control r5 r5 ∼
priority r6 r6 ∼

preemption control r7 r7 ∼
– r8. . . r12 r8. . . r12 ∼

UTCB r13 r13 UTCB
– r14. . . r29 r14. . . r29 ∼
– r30, r31 r30, r31 ≡
– lr lr ∼

Schedule ctr ctr ∼
– cr cr ∼
– xer xer ∼

IPC [Systemcall]

− Ipc→

bctrl

– r0 r0 ∼
– r1 r1 ≡
– r2 r2 ≡

to r3 r3 from
FromSpecifier r4 r4 ∼

Timeouts r5 r5 ∼
– r6. . . r12 r6. . . r12 ∼

UTCB r13 r13 UTCB
MR 0 r14 r14 MR 0

MR 1 r15 r15 MR 1

MR 2 r16 r16 MR 2

MR 3 r17 r17 MR 3

MR 4 r18 r18 MR 4

MR 5 r19 r19 MR 5

MR 6 r20 r20 MR 6

MR 7 r21 r21 MR 7

MR 8 r22 r22 MR 8

MR 9 r23 r23 MR 9

– r24. . . r29 r24. . . r29 ∼
– r30, r31 r30, r31 ≡
– lr lr ∼

Ipc ctr ctr ∼
– cr cr ∼
– xer xer ∼

SYSTEMCALLS 137

LIPC [Systemcall]

− Lipc→

bctrl

– r0 r0 ∼
– r1 r1 ≡
– r2 r2 ≡

to r3 r3 from
FromSpecifier r4 r4 ∼

Timeouts r5 r5 ∼
– r6. . . r12 r6. . . r12 ∼

UTCB r13 r13 UTCB
MR 0 r14 r14 MR 0

MR 1 r15 r15 MR 1

MR 2 r16 r16 MR 2

MR 3 r17 r17 MR 3

MR 4 r18 r18 MR 4

MR 5 r19 r19 MR 5

MR 6 r20 r20 MR 6

MR 7 r21 r21 MR 7

MR 8 r22 r22 MR 8

MR 9 r23 r23 MR 9

– r24. . . r29 r24. . . r29 ∼
– r30, r31 r30, r31 ≡
– lr lr ∼

Lipc ctr ctr ∼
– cr cr ∼
– xer xer ∼

UNMAP [Systemcall]

− Unmap→

bctrl

– r0 r0 ∼
– r1 r1 ≡
– r2 r2 ≡

control r3 r3 ∼
– r4. . . r12 r4. . . r12 ∼

UTCB r13 r13 UTCB
– r14. . . r29 r14. . . r29 ∼
– r30, r31 r30, r31 ≡
– lr lr ∼

Unmap ctr ctr ∼
– cr cr ∼
– xer xer ∼

SPACECONTROL [Privileged Systemcall]

− Space Control→

bctrl

– r0 r0 ∼
– r1 r1 ≡
– r2 r2 ≡

SpaceSpecifier r3 r3 result
control r4 r4 control

KernelInterfacePageArea r5 r5 ∼
UtcbArea r6 r6 ∼

Redirector r7 r7 ∼
– r8. . . r12 r8. . . r12 ∼

UTCB r13 r13 UTCB
– r14. . . r29 r14. . . r29 ∼
– r30, r31 r30, r31 ≡
– lr lr ∼

SpaceControl ctr ctr ∼
– cr cr ∼
– xer xer ∼

138 SYSTEMCALLS

PROCESSORCONTROL [Privileged Systemcall]

− Processor Control→

bctrl

– r0 r0 ∼
– r1 r1 ≡
– r2 r2 ≡

ProcessorNo r3 r3 result
InternalFreq r4 r4 ∼
ExternalFreq r5 r5 ∼

voltage r6 r6 ∼
– r7. . . r12 r7. . . r12 ∼

UTCB r13 r13 UTCB
– r14. . . r29 r14. . . r29 ∼
– r30, r31 r30, r31 ≡
– lr lr ∼

ProcessorControl ctr ctr ∼
– cr cr ∼
– xer xer ∼

MEMORYCONTROL [Privileged Systemcall]

−Memory Control→

bctrl

– r0 r0 ∼
– r1 r1 ≡
– r2 r2 ≡

control r3 r3 result
attribute0 r4 r4 ∼
attribute1 r5 r5 ∼
attribute2 r6 r6 ∼
attribute3 r7 r7 ∼

– r8. . . r12 r8. . . r12 ∼
UTCB r13 r13 UTCB

– r14. . . r29 r14. . . r29 ∼
– r30, r31 r30, r31 ≡
– lr lr ∼

MemoryControl ctr ctr ∼
– cr cr ∼
– xer xer ∼

MEMORY ATTRIBUTES 139

D.3 Memory Attributes [powerpc64]

The powerpc64 architecture supports the following memory/cache attribute values, to be used with the MEMORYCON-
TROL system-call:

attribute value
Default 0
Uncached 1
Coherent 2

The default attributes depend on the platform and not all modes are defined for all processors.

140 EXCEPTION MESSAGE FORMAT

D.4 Exception Message Format [powerpc64]

System Call Trap

System Call Trap Message to Exception Handler

Flags (64) MR 12

SP (64) MR 11

IP (64) MR 10

r0 (64) MR 9

r10 (64) MR 8

r9 (64) MR 7

r8 (64) MR 6

r7 (64) MR 5

r6 (64) MR 4

r5 (64) MR 3

r4 (64) MR 2

r3 (64) MR 1

-5 (44) 0 (4) t = 0 (6) u = 12 (6) MR 0

When user code executes the PowerPC sc instruction, the kernel delivers the system call trap message to the exception
handler. The kernel preserves only partial user state when handling a sc instruction. State is preserved similarly for the
inclusive set of saved registers according the 64-bit PowerPC ELF ABI for function calls.

The non-volatile registers are: r1, r2, r13 . . . r31, CR2 . . . CR4
The volatile registers are: r0, r3 . . . r12, LR, CTR, XER, CR0, CR1, CR5 . . . CR7
Thread virtual registers may also be clobbered.

Generic Traps

Generic Trap Message To Exception Handler

EXCEPTION MESSAGE FORMAT 141

ErrorAddress (64) MR 7

LocalID (64) MR 6

ErrorCode (64) MR 5

ExceptionNo (64) MR 4

Flags (64) MR 3

SP (64) MR 2

IP (64) MR 1

-5 (44) 0 (4) t = 0 (6) u = 6/7 (6) MR 0

The kernel synthesizes exception messages in response to architecture specific events. Some traps are handled by the
kernel and therefore do not generate exception messages. Exceptions that provide an error address use the ErrorAddress
register and specify 7 Untyped words, otherwise only 6 Untyped words will be sent. The kernel preserves all user state,
including thread virtual registers.

For some exceptions, The following is a table of values for the Generic Trap ExceptionNo:

Exception ExceptionNo ErrorCode Delivered ErrorAddress
System Reset 0x100 - No -
Machine Check 0x200 - No -
DSI 0x300 DSISR If not paging related Yes
ISI 0x400 - If not paging related No
Interrupt 0x500 - No No
Alignment 0x600 DSISR Yes Yes
Program 0x700 - Yes Yes
FPU Unavailable 0x800 - No -
Decrementer 0x900 - No -
System Call 0xc00 - No -
Trace 0xd00 - If kdb not using No
FPU Assist 0xe00 - Yes No
Performance 0xf00 - Yes No
Breakpoint 0x1300 - Yes No
Soft Patch 0x1500 - Yes No
Maintenance 0x1600 - Yes No
Instrumentation 0x2000 - Yes No

Note, not all of these exceptions will be delivered via exception IPC. Some will be handled by the kernel. Delivered
exceptions are indicated in the last column of the table above.

142 BOOTING

D.5 Booting [powerpc64]

IBM OpenFirmware Machines

L4 must be loaded into memory at the physical location defined by the kernel’s ELF header. It can be started with virtual
addressing enabled or disabled. Execution of L4 must begin at the entry point defined by the kernel’s ELF header.

When entering the kernel, the registers which support in-register file parameter passing, R3–R10 according to the Open-
Power ABI, must be cleared for upwards compatibility, except as noted below. All other registers in the register file are
undefined at kernel entry.

The kernel may use OpenFirmware for debug console I/O. To support OpenFirmware I/O, the OpenFirmware virtual
mode client call-back address must be passed to the kernel in register R5, and OpenFirmware must be prepared to handle
client call-backs using virtual addressing???. In all other cases, register R5 must be zero.

The boot loader must copy the OpenFirmware device tree to memory, and record its physical location in a memory
descriptor of the kernel interface page. The copy of the device tree must include the package handles of the device tree
nodes

Appendix E

Alpha Interface

144 VIRTUAL REGISTERS

E.1 Virtual Registers [alpha]

Thread Control Registers (TCRs)

TCRs are mapped to memory locations. They are implemented as part of the Alpha-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB is identical to the thread’s local ID, and is thus immutable.
The UTCB (and hence local ID) is available through the rdunique PAL call. UTCB objects of the current thread can
be accessed as any other memory object. UTCBs of other threads must not be accessed, even if they are physically
accessible.

ThreadWord1 (64) +88

ThreadWord0 (64) +80

VirtualSender/ActualSender (64) +72

IntendedReceiver (64) +64

ErrorCode (64) +56

XferTimeouts (64) +48

∼ (48) cop flags (8) preempt flags (8) +40

ExceptionHandler (64) +32

Pager (64) +24

UserDefinedHandle (64) +16

ProcessorNo (64) +8

MyGlobalId (64) ←− UTCB

MyLocalId = UTCB address (64) call pal rdunique

The TCR MyLocalId is not part of the UTCB. On Alpha it is identical with the UTCB address
and can be found using the rdunique PAL call.

Message Registers (MRs)

Message registers MR 0 through MR 8 map to the processor’s general purpose register file for IPC and LIPC calls. The
remaining message registers map to memory locations in the UTCB. MR 9 starts at byte offset 200 in the UTCB, and
successive message registers follow in memory.

For the other system calls, message registers map to memory locations in the UTCB, with MR 0 starting at byte offset
128.

VIRTUAL REGISTERS 145

MR 0...8 MR 8 s5

MR 7 s4

MR 6 s3

MR 5 s2

MR 4 s1

MR 3 s0

MR 2 t7

MR 1 t6

MR 0 s6

MR 9...63 [UTCB fields]

MR 63 (64) +632

...
...

MR 12 (64) +224

MR 11 (64) +216

MR 10 (64) +208

MR 9 (64) ←− UTCB address + 200

Buffer Registers (BRs)

The buffer registers map to memory locations in the UTCB. BR 0 is at byte offset 640 in the UTCB, BR 1 at byte offset
648, etc.

BR 0...32 [UTCB fields]

BR 32 (64) +896

...
...

BR 1 (64) +648

BR 0 (64) ←− UTCB address + 640

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located at UTCB address + 128. . . UTCB address + 199. The
application can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the
memory contents within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

146 SYSTEMCALLS

E.2 Systemcalls [alpha]

The system-calls invoked via the ’jsr’ instruction are located in the kernel’s area of the virtual address space. Their precise
locations are stored in the kernel interface page (see page 2). One may invoke the system calls with any instruction that
branches to the appropriate target, as long as the return-address register (RA) contains the correct return address.

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the kip.

Unless explicitly stated, the kernel follows the Alpha calling convention for the system call interface. This means that
arguments are passed in the a0 – a5 registers and the result is placed in the v0 register. All ‘s’ registers are preserved and
all ‘t’ registers are undefined. The sp and ra registers are also preserved.

All floating point registers are preserved across a system call.
All other registers contain return values, are undefined, or may be preserved according to processor specific rules.

KERNELINTERFACE [Slow Systemcall]

− KernelInterface→

call pal cserve

– v0 v0 KIP base address
0x4c34754b4b495034 a0 a0 API Version

– a1 a1 API Flags
– a2 a2 Kernel ID
– a3 a3 ∼
– a4 a4 ∼
– a5 a5 ∼

EXCHANGEREGISTERS [Systemcall]

− Exchange Registers→

jsr ra, ExchangeRegisters

– v0 v0 result
dest a0 a0 control

control a1 a1 SP
SP a2 a2 IP
IP a3 a3 FLAGS

FLAGS a4 a4 UserDefinedHandle
UserDefinedHandle a5 a5 pager

pager t1 t1 ∼

THREADCONTROL [Privileged Systemcall]

− Thread Control→

jsr ra, ThreadControl

– v0 v0 result
dest a0 a0 ∼

SpaceSpecifier a1 a1 ∼
Scheduler a2 a2 ∼

Pager a3 a3 ∼
UtcbLocation a4 a4 ∼

– a5 a5 ∼

SYSTEMCALLS 147

SYSTEMCLOCK [Systemcall]

− SystemClock→

jsr ra, SystemClock

– v0 v0 clock
– a0 a0 ∼
– a1 a1 ∼
– a2 a2 ∼
– a3 a3 ∼
– a4 a4 ∼
– a5 a5 ∼

Note that the SystemClock system call is currently UNIMPLEMENTED on Alpha.

THREADSWITCH [Systemcall]

− ThreadSwitch→

jsr ra, ThreadSwitch

– v0 v0 ∼
dest a0 a0 ∼

– a1 a1 ∼
– a2 a2 ∼
– a3 a3 ∼
– a4 a4 ∼
– a5 a5 ∼

SCHEDULE [Systemcall]

− Schedule→

jsr ra, Schedule

– v0 v0 result
dest a0 a0 TimeControl

TimeControl a1 a1 ∼
ProcessorControl a2 a2 ∼

Priority a3 a3 ∼
PreemptionControl a4 a4 ∼

– a5 a5 ∼

IPC [Systemcall]

− Ipc→

jsr ra, Ipc

– v0 v0 result
dest a0 a0 ∼

source a1 a1 ∼
timeout a2 a2 ∼

– a3 a3 ∼
– a4 a4 ∼
– a5 a5 ∼

MR 0 s6 s6 MR 0

MR 1 t6 t6 MR 1

MR 2 t7 t7 MR 2

MR 3 s0 s0 MR 3

MR 4 s1 s1 MR 4

MR 5 s2 s2 MR 5

MR 6 s3 s3 MR 6

MR 7 s4 s4 MR 7

MR 8 s5 s5 MR 8

148 SYSTEMCALLS

LIPC [Systemcall]

− Lipc→

jsr ra, Lipc

– v0 v0 result
dest a0 a0 ∼

source a1 a1 ∼
timeout a2 a2 ∼

– a3 a3 ∼
– a4 a4 ∼
– a5 a5 ∼

MR 0 s6 s6 MR 0

MR 1 t6 t6 MR 1

MR 2 t7 t7 MR 2

MR 3 s0 s0 MR 3

MR 4 s1 s1 MR 4

MR 5 s2 s2 MR 5

MR 6 s3 s3 MR 6

MR 7 s4 s4 MR 7

MR 8 s5 s5 MR 8

Note that on Alpha LIPC is not implemented: use IPC instead.

UNMAP [Systemcall]

− Unmap→

jsr ra, Unmap

– v0 v0 ∼
control a0 a0 ∼

– a1 a1 ∼
– a2 a2 ∼
– a3 a3 ∼
– a4 a4 ∼
– a5 a5 ∼

SPACECONTROL [Privileged Systemcall]

− Space Control→

jsr ra, SpaceControl

– v0 v0 result
SpaceSpecifier a0 a0 control

control a1 a1 ∼
KIPArea a2 a2 ∼

UTCBArea a3 a3 ∼
Redirector a4 a4 ∼

– a5 a5 ∼

PROCESSORCONTROL [Privileged Systemcall]

− Processor Control→

jsr ra, ProcessorControl

– v0 v0 result
ProcessorNo a0 a0 ∼

∼ a1 a1 ∼
InternalFreq. a2 a2 ∼
ExternalFreq. a3 a3 ∼

voltage a4 a4 ∼
– a5 a5 ∼

Note that on Alpha the ProcessorControl system call is not implemented.

SYSTEMCALLS 149

MEMORYCONTROL [Privileged Systemcall]

−Memory Control→

jsr ra, MemoryControl

– v0 v0 result
control a0 a0 ∼

attribute0 a1 a1 ∼
attribute1 a2 a2 ∼
attribute2 a3 a3 ∼
attribute3 a4 a4 ∼

– a5 a5 ∼

Note that on Alpha the MemoryControl system call is not implemented: the memory attributes for a page are defined by
the system, and cannot be controlled by the application (or kernel).

150 BOOTING

E.3 Booting [alpha]

All SRM based machines

L4 must be loaded at the virtual address defined in the ELF header (corresponding to the physical region of the virtual
address space). The kernel also requires the bootloader to initialise some kernel data structures, so the supplied bootloader
is recommended.

The preferred method for booting the kernel is via BootP. Consult the SRM documentation for instructions on setting
up SRM to boot a file from a remote host.

Appendix F

MIPS-64 Interface

152 VIRTUAL REGISTERS

F.1 Virtual Registers [MIPS-64]

Thread Control Registers (TCRs)

TCRs are mapped to memory locations. They are implemented as part of the mips64-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB is identical to the thread’s local ID, and is thus immutable. The
UTCB (and hence local ID) is available in the k0 register. UTCB objects of the current thread can be accessed as any
other memory object. UTCBs of other threads must not be accessed, even if they are physically accessible.

ThreadWord 1 (64) +88

ThreadWord 0 (64) +80

VirtualSender/ActualSender (64) +72

IntendedReceiver (64) +64

ErrorCode (64) +56

XferTimeouts (64) +48

∼ (48) cop flags (8) preempt flags (8) +40

ExceptionHandler (64) +32

Pager (64) +24

UserDefinedHandle (64) +16

ProcessorNo (64) +8

MyGlobalId (64) ←− UTCB address

MyLocalId = UTCB address (64) k0

The TCR MyLocalId is not part of the UTCB. On mips64 it is identical with the UTCB address
and is always in the k0 register. The register should be treated as read-only. If modified, the
effects are undefined.

Message Registers (MRs)

Message registers MR 0 through MR 8 map to the processor’s general purpose register file for IPC and LIPC calls. The
remaining message registers map to memory locations in the UTCB. MR 9 starts at byte offset 200 in the UTCB, and
successive message registers follow in memory.

The first nine message registers are mapped to the registers v1, s0 to s7. MR 9...63 are mapped to memory in the UTCB.

VIRTUAL REGISTERS 153

MR 0...8 MR 0 (64) v1

MR 1 (64) s0

MR 2 (64) s1

MR 3 (64) s2

MR 4 (64) s3

MR 5 (64) s4

MR 6 (64) s5

MR 7 (64) s6

MR 8 (64) s7

MR 0...63 [UTCB fields]

MR 63 (64) +632

...
...

MR 9 (64) ←− UTCB address + 200

Buffer Registers (BRs)

The buffer registers map to memory locations in the UTCB. BR 0 is at byte offset 640 in the UTCB, BR 1 at byte offset
648, etc.

BR 0...32 [UTCB fields]

BR 32 (64) +896

...
...

BR 1 (64) +648

BR 0 (64) ←− UTCB address + 640

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located at UTCB address + 128. . . UTCB address + 191. The
application can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the
memory contents within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

154 SYSTEMCALLS

F.2 Systemcalls [MIPS-64]

The system-calls invoked via the jal instruction are located in the kernel’s area of the virtual address space. Their precise
locations are stored in the kernel interface page (see page 2). One may invoke the system calls with any instruction that
branches to the appropriate target, as long as the return-address register RA contains the correct return address.

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the KIP.

In general, the kernel follows the MIPS ABI64 calling convention for the system call boundary. This means that ar-
guments are passed in the a0 – a7 registers, and the result is placed in the v0 register. All floating point registers are
preserved across a system call. All other registers contain return values, are undefined, or may be preserved according to
processor specific rules.

KERNELINTERFACE [Slow Systemcall]

− KernelInterface→

opcode 0x07FFFFFF

0x1FACECA1114E1F64 at at ≡
– v0,v1 v0,v1 ≡
– a0. . . a3 a0. . . a3 ≡
– t0 a4 KIP base address
– t1 a5 API Version
– t2 a6 API Flags
– t3 a7 Kernel ID
– t4. . . t7 t4. . . t7 ≡
– s0. . . s7 s0. . . s7 ≡
– t8, t9 t8, t9 ≡
– gp, sp gp, sp ≡
– s8 s8 ≡
– ra ra ≡

For this system-call, all registers other than the output registers are preserved.

EXCHANGEREGISTERS [Systemcall]

− Exchange Registers→

jal ExchangeRegisters

– at at ∼
– v0 v0 result
– v1 v1 ∼

dest a0 a0 control
control a1 a1 SP

SP a2 a2 IP
IP a3 a3 FLAGS

FLAGS t0 a4 pager
UserDefinedHandle t1 a5 UserDefinedHandle

pager t2 a6 ∼
– t3 a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

SYSTEMCALLS 155

THREADCONTROL [Privileged Systemcall]

− Thread Control→

jal ThreadControl

– at at ∼
– v0 v0 result
– v1 v1 ∼

dest a0 a0 ∼
space a1 a1 ∼

scheduler a2 a2 ∼
pager a3 a3 ∼
UTCB t0 a4 ∼

– t1. . . t3 a5. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

SYSTEMCLOCK [Systemcall]

− SystemClock→

jal SystemClock

– at at ∼
– v0 v0 clock
– v1 v1 ∼
– a0. . . a3 a0. . . a3 ∼
– t0. . . t3 a4. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

THREADSWITCH [Systemcall]

− ThreadSwitch→

jal ThreadSwitch

– at at ∼
– v0, v1 v0, v1 ∼

dest a0 a0 ∼
– a1. . . a3 a1. . . a3 ∼
– t0. . . t3 a4. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

156 SYSTEMCALLS

SCHEDULE [Systemcall]

− Schedule→

jal Schedule

– at at ∼
– v0 v0 result
– v1 v1 ∼

dest a0 a0 time control
time control a1 a1 ∼

processor control a2 a2 ∼
priority a3 a3 ∼

preemption control t0 a4 ∼
– t1. . . t3 a5. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

IPC [Systemcall]

− Ipc→

jal Ipc

– at at ∼
– v0 v0 result

MR (0) v1 v1 MR (0)
to a0 a0 ∼

FromSpecifier a1 a1 ∼
Timeouts a2 a2 ∼

– a3 a3 ∼
– t0. . . t3 a4. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼

MR 1 s0 s0 MR 1

MR 2 s1 s1 MR 2

MR 3 s2 s2 MR 3

MR 4 s3 s3 MR 4

MR 5 s4 s4 MR 5

MR 6 s5 s5 MR 6

MR 7 s6 s6 MR 7

MR 8 s7 s7 MR 8

– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

SYSTEMCALLS 157

LIPC [Systemcall]

− Lipc→

jal Lipc

– at at ∼
– v0 v0 result
– v1 v1 ∼

to a0 a0 ∼
FromSpecifier a1 a1 ∼

Timeouts a2 a2 ∼
– a3 a3 ∼
– t0. . . t3 a4. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼

MR 0 s0 s0 MR 0

MR 1 s1 s1 MR 1

MR 2 s2 s2 MR 2

MR 3 s3 s3 MR 3

MR 4 s4 s4 MR 4

MR 5 s5 s5 MR 5

MR 6 s6 s6 MR 6

MR 7 s7 s7 MR 7

– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

UNMAP [Systemcall]

− Unmap→

jal Unmap

– at at ∼
– v0, v1 v0, v1 ∼

control a0 a0 ∼
– a1. . . a3 a1. . . a3 ∼
– t0. . . t3 a4. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

SPACECONTROL [Privileged Systemcall]

− Space Control→

jal SpaceControl

– at at ∼
– v0 v0 result
– v1 v1 ∼

SpaceSpecifier a0 a0 control
control a1 a1 ∼

KernelInterfacePageArea a2 a2 ∼
UtcbArea a3 a3 ∼

Redirector t0 a4 ∼
– t1. . . t3 a5. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

158 SYSTEMCALLS

PROCESSORCONTROL [Privileged Systemcall]

− Processor Control→

jal ProcessorControl

– at at ∼
– v0 v0 result
– v1 v1 ∼

processor no a0 a0 ∼
InternalFreq a1 a1 ∼
ExternalFreq a2 a2 ∼

voltage a3 a3 ∼
– t0. . . t3 a4. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

MEMORYCONTROL [Privileged Systemcall]

−Memory Control→

jal MemoryControl

– at at ∼
– v0 v0 result
– v1 v1 ∼

control a0 a0 ∼
attribute0 a1 a1 ∼
attribute1 a2 a2 ∼
attribute2 a3 a3 ∼
attribute3 t0 a4 ∼

– t1. . . t3 a5. . . a7 ∼
– t4. . . t7 t4. . . t7 ∼
– s0. . . s7 s0. . . s7 ∼
– t8, t9 t8, t9 ∼
– gp gp ∼
– sp sp ≡
– s8 s8 ≡
– ra ra ∼

MEMORY ATTRIBUTES 159

F.3 Memory Attributes [MIPS-64]

The mips64 architecture supports the following memory/cache attribute values, to be used with the MEMORYCONTROL
system-call:

attribute value
Default 0
Uncached 1
Write-back 2
Write-through 3
Write-through (no allocate) 4
Coherent 5
Flush-I (Flush instruction cache) 30
Flush-D (Flush data cache) 31

The default attributes depend on the platform and not all modes are defined for all processors.

Before disabling the cache for a page, the software must ensure that all memory belonging to the target page is flushed
from the cache.

160 EXCEPTION MESSAGE FORMAT

F.4 Exception Message Format [MIPS-64]

System Call Trap

System Call Trap Message to Exception Handler

a7/t3 (64) MR 13

a6/t2 (64) MR 12

a5/t1 (64) MR 11

a4/t0 (64) MR 10

a3 (64) MR 9

a2 (64) MR 8

a1 (64) MR 7

a0 (64) MR 6

v1 (64) MR 5

v0 (64) MR 4

Status (64) MR 3

SP (64) MR 2

IP (64) MR 1

-5 (44) 0 (4) t = 0 (6) u = 13 (6) MR 0

When user code executes the Mips syscall instruction, the kernel delivers the system call trap message to the exception
handler. The kernel preserves only partial user state when handling a syscall instruction. State is preserved similarly for
the inclusive set of saved registers according the MIPS ABI 64,n32,o32 for function calls. The Status value is described
under Generic Traps.

The non-volatile registers are: s0 . . . s7, gp, sp, fp/s8
The volatile registers are: AT, v0, v1, a0 . . . a7, t4 . . . t9, k0, k1, ra, hi, lo
Thread virtual registers may also be clobbered.

Generic Traps

Generic Trap Message To Exception Handler

EXCEPTION MESSAGE FORMAT 161

LocalID (64) MR 6

ErrorCode (64) MR 5

ExceptionNo (64) MR 4

Status (64) MR 3

SP (64) MR 2

IP (64) MR 1

-5 (44) 0 (4) t = 0 (6) u = 6 (6) MR 0

The kernel synthesizes exception messages in response to architecture specific events. Some traps are handled by the
kernel and therefore do not generate exception messages. The kernel preserves all user state, including thread virtual
registers. The Status value is encoded as bits: 31..1 = Flags: 31..1, bit: 0 = Branch. Branch indicates whether the
exception took place in a branch delay slot or not.

The following is a table of values for the Generic Trap ExceptionNo:

Exception ExceptionNo ErrorCode Delivered
Interrupt 0 - No
TLB Write Denied 1 - No
TLB Miss Load 2 - No
TLB Miss Store 3 - No
Address Error (load/execute) 4 BadVAddress Yes
Address Error (store) 5 BadVAddress Yes
Bus Error (instruction) 6 - Yes
Bus Error (data) 7 - Yes
System Call 8 - v0 ≥ 0
Break Point 9 - !(-111 ≥ AT ≥ -100)
Reserved Instruction 10 Instruction AT 6= MAGIC KIP REQUEST
Coprocessor Unavailable 11 Number CP0, CP2, CP3
Arithmetic Overflow 12 - Yes
Trap 13 - Yes
Virtual Coherency (instruction) 14 - Yes
Floating Point 15 - Yes
Watch Point 23 - Unless used by kdb
Virtual Coherency (data) 31 - Yes

Note, not all of these exceptions will be delivered via exception IPC. Some will be handled by the kernel. Delivered
exceptions are indicated in the last column of the table above.

162 BOOTING

F.5 Booting [MIPS-64]

The kernel is provided as an ELF file and must be loaded according to the load addresses defined in the ELF header
(corresponding to the physical region of the virtual address space). The kernel must be started in 64bit mode.

Appendix G

AMD64 Interface

164 VIRTUAL REGISTERS

G.1 Virtual Registers [amd64]

Thread Control Registers (TCRs)

TCRs are implemented as part of the amd64-specific user-level thread control block (UTCB). The address of the current
thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread via THREAD-
CONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation parameter when
invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be loaded through a
machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must
not be accessed, even if they are physically accessible. ThreadWord0 and ThreadWord1 are free to be used by systems
software (e.g., IDL compilers). The kernel associates no semantics with these words.

ThreadWord 0 (64) ←− UTCB address – 32

ThreadWord 1 (64) – 40

VirtualSender/ActualSender (64) – 48

IntendedReceiver (64) – 56

XferTimeouts (64) – 64

ErrorCode (64) – 72

∼ (48) cop flags (8) preempt flags (8) – 80

ExceptionHandler (64) – 88

Pager (64) – 96

UserDefinedHandle (64) –104

ProcessorNo (64) –112

MyGlobalId (64) –120

MyLocalId = UTCB address (64) gs:[0]

The TCR MyLocalId is not part of the UTCB. On amd64 it is identical with the UTCB address
and can be loaded from memory location gs:[0].

Message Registers (MRs)

Memory-mapped MRs are implemented as part of the amd64-specific user-level thread control block (UTCB). The ad-
dress of the current thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active
thread via THREADCONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLoca-
tion parameter when invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can

VIRTUAL REGISTERS 165

be loaded through a machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

The first 8 message registers MR 0 through MR 7 are always mapped to general register. MR 8...63 are always mapped to
memory.

MR 0...7 MR 7 R15

MR 6 R14

MR 5 R13

MR 4 R12

MR 3 R10

MR 2 RBX

MR 1 RAX

MR 0 R09

MR 8...63 [UTCB fields]

MR 63 (64) + 456

...
...

MR 10 (64) + 80

MR 9 (64) + 72

MR 8 (64) ←− UTCB address + 64

Buffer Registers (BRs)

BRs are implemented as part of the amd64-specific user-level thread control block (UTCB). The address of the current
thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread via THREAD-
CONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation parameter when
invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be loaded through a
machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

BR 0...32 [UTCB fields]

166 VIRTUAL REGISTERS

BR 0 (64) ←− UTCB address –128

BR 1 (64) –136

...
...

BR 32 (64) –384

SYSTEMCALLS 167

G.2 Systemcalls [amd64]

The system-calls which are invoked by the call instruction take the target of the calls the from system-call link fields in
the kernel interface page (see page 2). Each system-call link specifies an address relative to the kernel interface page’s
base address. An application may use instructions other than call to invoke the system-calls, but must ensure that a valid
return address resides on the stack.

KERNELINTERFACE [Slow Systemcall]

− KernelInterface→

lock: nop

– RAX RAX base address
– RCX RCX API Version
– RDX RDX API Flags
– RSI RSI Kernel ID
– RDI RDI ≡
– RBX RBX ≡
– RBP RBP ≡
– R08 R08 ≡
– R09 R09 ≡
– R10 R10 ≡
– R11 R11 ≡
– R12 R12 ≡
– R13 R13 ≡
– R14 R14 ≡
– R15 R15 ≡
– RSP RSP ≡

EXCHANGEREGISTERS [Systemcall]

− Exchange Registers→

call ExchangeRegisters

dest RAX RAX result
– RCX RCX ∼

SP RDX RDX SP
control RSI RSI control

pager RDI RDI pager
– RBX RBX ∼
– RBP RBP ∼

IP R08 R08 IP
FLAGS R09 R09 FLAGS

UserDefinedHandle R10 R10 UserDefinedHandle
– R11 R11 ∼
– R12 R12 ∼
– R13 R13 ∼
– R14 R14 ∼
– R15 R15 ∼
– RSP RSP ∼

“FLAGS” refers to the user-modifiable amd64 processor flags that are held in the RFLAGS register.

168 SYSTEMCALLS

THREADCONTROL [Privileged Systemcall]

− Thread Control→

call ThreadControl

– RAX RAX result
– RCX RCX ∼

scheduler RDX RDX ∼
pager RSI RSI ∼

dest RDI RDI ∼
– RBX RBX ∼
– RBP RBP ∼

SpaceSpecifier R08 R08 ∼
UTCBLocation R09 R09 ∼

– R10 R10 ∼
– R11 R11 ∼
– R12 R12 ∼
– R13 R13 ∼
– R14 R14 ∼
– R15 R15 ∼
– RSP RSP ∼

SYSTEMCLOCK [Systemcall]

− SystemClock→

call SystemClock

– RAX RAX clock
– RCX RCX ∼
– RDX RDX ∼
– RSI RSI ∼
– RDI RDI ∼
– RBX RBX ∼
– RBP RBP ∼
– R08 R08 ∼
– R09 R09 ∼
– R10 R10 ∼
– R11 R11 ∼
– R12 R12 ∼
– R13 R13 ∼
– R14 R14 ∼
– R15 R15 ∼
– RSP RSP ∼

THREADSWITCH [Systemcall]

− ThreadSwitch→

call ThreadSwitch

– RAX RAX ∼
– RCX RCX ∼
– RDX RDX ∼
– RSI RSI ∼

dest RDI RDI ∼
– RBX RBX ∼
– RBP RBP ∼
– R08 R08 ∼
– R09 R09 ∼
– R10 R10 ∼
– R11 R11 ∼
– R12 R12 ∼
– R13 R13 ∼
– R14 R14 ∼
– R15 R15 ∼
– RSP RSP ∼

SYSTEMCALLS 169

SCHEDULE [Systemcall]

− Schedule→

call Schedule

– RAX RAX time control
– RCX RCX ∼

time control RDX RDX ∼
prio RSI RSI ∼
dest RDI RDI ∼

– RBX RBX ∼
– RBP RBP ∼

processor control R08 R08 ∼
preemption control R09 R09 ∼

– R10 R10 ∼
– R11 R11 ∼
– R12 R12 ∼
– R13 R13 ∼
– R14 R14 ∼
– R15 R15 ∼
– RSP RSP ∼

IPC [Systemcall]

− Ipc→

call Ipc

MR 1 RAX RAX MR 1

– RCX RCX ∼
FromSpecifier RDX RDX ∼

to RSI RSI from
UTCB RDI RDI ≡
MR 2 RBX RBX MR 2

– RBP RBP ∼
Timeouts R08 R08 ∼

MR 0 R09 R09 MR 0

MR 3 R10 R10 MR 3

– R11 R11 ∼
MR 4 R12 R12 MR 4

MR 5 R13 R13 MR 5

MR 6 R14 R14 MR 6

MR 7 R15 R15 MR 7

– RSP RSP ∼

LIPC [Systemcall]

− Lipc→

call Lipc

MR 1 RAX RAX MR 1

– RCX RCX ∼
FromSpecifier RDX RDX ∼

to RSI RSI from
UTCB RDI RDI ≡
MR 2 RBX RBX MR 2

– RBP RBP ∼
Timeouts R08 R08 ∼

MR 0 R09 R09 MR 0

MR 3 R10 R10 MR 3

– R11 R11 ∼
MR 4 R12 R12 MR 4

MR 5 R13 R13 MR 5

MR 6 R14 R14 MR 6

MR 7 R15 R15 MR 7

– RSP RSP ∼

170 SYSTEMCALLS

UNMAP [Systemcall]

− Unmap→

call Unmap

MR 1 RAX RAX MR 1

– RCX RCX ∼
control RDX RDX ∼
∼ RSI RSI ∼

UTCB RDI RDI ≡
MR 2 RBX RBX MR 2

– RBP RBP ∼
– R08 R08 ∼

MR 0 R09 R09 MR 0

MR 3 R10 R10 MR 3

– R11 R11 ∼
MR 4 R12 R12 MR 4

MR 5 R13 R13 MR 5

MR 6 R14 R14 MR 6

MR 7 R15 R15 MR 7

– RSP RSP ∼

SPACECONTROL [Privileged Systemcall]

− Space Control→

call SpaceControl

– RAX RAX result
– RCX RCX ∼

KernelInterfacePageArea RDX RDX control
control RSI RSI ∼

SpaceSpecifier RDI RDI ∼
– RBX RBX ∼
– RBP RBP ∼

UTCBArea R08 R08 ∼
Redirector R09 R09 ∼

– R10 R10 ∼
– R11 R11 ∼
– R12 R12 ∼
– R13 R13 ∼
– R14 R14 ∼
– R15 R15 ∼
– RSP RSP ∼

PROCESSORCONTROL [Privileged Systemcall]

− Processor Control→

call ProcessorControl

– RAX RAX result
– RCX RCX ∼

ExternalFrequency RDX RDX ∼
InternalFrequency RSI RSI ∼

ProcessorNo RDI RDI ∼
– RBX RBX ∼
– RBP RBP ∼

voltage R08 R08 ∼
– R09 R09 ∼
– R10 R10 ∼
– R11 R11 ∼
– R12 R12 ∼
– R13 R13 ∼
– R14 R14 ∼
– R15 R15 ∼
– RSP RSP ∼

SYSTEMCALLS 171

MEMORYCONTROL [Privileged Systemcall]

−Memory Control→

call MemoryControl

MR 1 RAX RAX ∼
attribute0 RCX RCX ∼

control RDX RDX result
attribute1 RSI RSI ∼

UTCB RDI RDI ≡
MR 2 RBX RBX ∼

– RBP RBP ∼
attribute2 R08 R08 ∼

MR 0 R09 R09 ∼
MR 3 R10 R10 ∼

attribute3 R11 R11 ∼
MR 4 R12 R12 ∼
MR 5 R13 R13 ∼
MR 6 R14 R14 ∼
MR 7 R15 R15 ∼

– RSP RSP ∼

172 IO PORTS

G.3 IO Ports [amd64]

IO Fpages

On AMD64 processors, IO-ports are handled as fpages. IO fpages can be mapped, granted, and unmapped like memory
fpages. Their minimal granularity is 1. An IO-fpage of size 2s′

has a 2s′
-aligned base address p, i.e. p mod 2s′

=0. An
fpage with base port address p and size 2s′

is denoted as described below.

IO fpage (p, 2s′
)

p (48) s’ (6) s = 2 (6) 0 1 1 0

IO-ports can only be mapped idempotently, i.e., physical port x is either mapped at IO address x in the task’s IO address
space, or it is not mapped at all. There are no distinct rights associated with IO ports, i.e., a task can be granted either
read- and write-access to an IO port, ore none at all.

IO Pagefault Protocol

A thread generating an IO port exception will cause the kernel to transparently generate an IO-pagefault IPC to the
faulting thread’s pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (64) MR 2

faulting port (48) size (6) s = 2 (6) 0 1 1 0 MR 1

−8 (44) 0 1 1 0 0 (4) t = 0 (6) u = 2 (6) MR 0

Acceptor [BR0]
0 (48) 16 (6) s = 2 (6) 0 0 0 0 BR 0

The acceptor covers the complete IO address space. The kernel accepts mappings or grants into
this region on behalf of the faulting thread. The received message is discarded.

Generic Programming Interface

#include <l4/amd64/specials.h>

Fpage IoFpage (Word BaseAddress, int FpageSize)

Fpage IoFpageLog2 (Word BaseAddress, int Log2FpageSize <= 16)
Delivers an IO fpage with the specified location and size.

CACHEABILITY HINTS 173

G.4 Cacheability Hints [amd64]

String items can specify cacheability hints to the kernel (see page 56). For amd64, the cacheability hints have the
following semantics.

hh = 00 Use the processor’s default cacheability strategy. Typically, cache lines are allocated for data
read and written (assuming that the processor’s default strategy is write-back and write-allocate).

hh = 01 Allocate cache lines in the entire cache hierarchy for data read or written.

hh = 10 Do not allocate new cache lines (entire cache hierarchy) for data read or written.

hh = 11 Allocate only new L1 cache line for data read or written. Do not allocate cache lines in lower
cache hierarchies.

Convenience Programming Interface

#include <l4/ipc.h>

CacheAllocationHint UseDefaultCacheLineAllocation

CacheAllocationHint AllocateNewCacheLines

CacheAllocationHint DoNotAllocateNewCacheLines

CacheAllocationHint AllocateOnlyNewL1CacheLines

174 MEMORY ATTRIBUTES

G.5 Memory Attributes [amd64]

The AMD64 architecture in general supports the following memory attributes values.

attribute value
Default 0
Uncacheable 1
Write Combining 2
Write Through 5
Write Protected 6
Write Back 7

Note that some attributes are only supported on certain processors. See the “AMD64 Architecture Programmer’s Manual
Volume 2: System Programming” for the semantics of the memory attributes and which processors they are supported
on.

Generic Programming Interface

#include <l4/misc.h>

Word DefaultMemory

Word UncacheableMemory

Word WriteCombiningMemory

Word WriteThroughMemory

Word WriteProtectedMemory

Word WriteBackMemory

EXCEPTION MESSAGE FORMAT 175

G.6 Exception Message Format [amd64]

To Exception Handler

ErrorCode MR 20

ExceptionNo MR 19

RFLAGS MR 18

RSP MR 17

R11 MR 16

R09 MR 15

R08 MR 14

RBP MR 13

RDI MR 12

RSI MR 11

RDX MR 10

RCX MR 9

RAX MR 8

R15 MR 7

R14 MR 6

R13 MR 5

R12 MR 4

R10 MR 3

RBX MR 2

RIP MR 1

−4/− 5 (44) 0 (4) 0 (4) t = 0 (6) u = 20 (6) MR 0

#PF (page fault), #MC (machine check exception), and some #GP (general protection), #SS (stack segment fault), and
#NM (no math coprocessor) exceptions are handled by the kernel and therefore do not generate exception messages.

Note that executing an INT n instructions in 32-bit mode will always raise a #GP (general protection). The exception
handler may interpret the error code (8n + 2, see processor manual) and emulate the INT n accordingly.

176 PROCESSOR MIRRORING

G.7 Processor Mirroring [amd64]

Segments

L4 uses a flat (unsegmented) memory model. There are only three segments available: user space, a read/write segment,
user space exec, an executable segment, and utcb address, a read-only segment. Both user space and user space exec
cover (at least) the complete user-level address space. Utcb address covers only enough memory to hold the UTCB
address.

The values of segment selectors are undefined. When a thread is created, its segment registers SS, DS, ES and FS
are initialized with user space, GS with utcb address, and CS with user space exec. Whenever the kernel detects a
general protection exception and the segment registers are not loaded properly, it reloads them with the above mentioned
selectors. From the user’s point of view, the segment registers cannot be modified.

However, the binary representation of user space and user space exec may change at any point during program exe-
cution. Never rely on any particular value.

Furthermore, the LSL (load segment limit) machine instruction may deliver wrong segment limits, even floating ones.
The result of this instruction is always undefined.

Debug Registers

User-level debug registers exist per thread. DR0. . . 3, DR6 and DR7 can be accessed by the machine instructions
mov n,DRx and mov DRx,r. However, only task-local breakpoints can be activated, i.e., bits G0. . . 3 in DR7 cannot be
set. Breakpoints operate per thread. Breakpoints are signaled as #DB exception (INT 1).

Note that user-level breakpoints are suspended when kernel breakpoints are set by the kernel debugger.

Model-Specific Registers

All privileged threads in the system have read and write access to all the Model-Specific Registers (MSRs) of the CPU.
Modification of some MSRs may lead to undefined system behavior. Any access to an MSR by an unprivileged thread
will raise an exception.

BOOTING 177

G.8 Booting [amd64]

PC-compatible Machines

L4 can be loaded at any 16-byte-aligned location beyond 0x1000 in physical memory. It can be started in real mode
or in 32-bit protected mode at address 0x100 or 0x1000 relative to its load address. The protected-mode conditions are
compliant to the Multiboot Standard Version 0.6.

Start Preconditions
Real Mode 32-bit Protected Mode

load base (L) L≥ 0x1000, 16-byte aligned L≥ 0x1000
load offset (X) X = 0x100 or X = 0x1000 X = 0x100 or X = 0x1000

Interrupts disabled disabled
Gate A20 ∼ open
EFLAGS I=0 I=0, VM=0

CR0 PE=0 PE=1, PG=0
(E)IP X L + X

CS L/16 0, 4GB, 32-bit exec
SS,DS,ES ∼ 0, 4GB, read/write

EAX ∼ 0x2BADB002
EBX ∼ ∗P

〈P + 0〉 ∼ OR 1
〈P + 4〉 n/a below 640 K mem in K
〈P + 8〉 beyond 1M mem in K

all remaining registers & flags
(general, floating point, ∼ ∼

ESP, xDT, TR, CRx, DRx)

L4 relocates itself to 0x1000, enters protected mode if started in real mode, enables paging and initializes itself.

178 BOOTING

Appendix H

SPARC v9 Interface

180 VIRTUAL REGISTERS

H.1 Virtual Registers [SPARC v9]

Thread Control Registers (TCRs)

TCRs are mapped to memory locations. They are implemented as part of the sparc64-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB is identical to the thread’s local ID, and is thus immutable.
Setting the UTCB address of an active thread via THREADCONTROL is similar to deletion and re-creation. There is a
fixed correlation between the UtcbLocation parameter when invoking THREADCONTROL and the UTCB address. The
UTCB address is provided in the general purpose register g7 at application start. UTCB objects of the current thread can
then be accessed as any other memory object. UTCBs of other threads must not be accessed, even if they are physically
accessible. ThreadWord0 and ThreadWord1 are free to be used by systems software (e.g., IDL compilers). The kernel
associates no semantics with these words.

ThreadWord 1 (64) + 88

ThreadWord 0 (64) + 80

∼ (48) cop flags (8) preempt flags (8) +72

ProcessorNo (64) +64

VirtualSender/ActualSender (64) +56

IntendedReceiver (64) +48

ErrorCode (64) +40

XferTimeouts (64) +32

UserDefinedHandle (64) +24

ExceptionHandler (64) +16

Pager (64) +8

MyGlobalId (64) ←− UTCB address

MyLocalId = UTCB address (64) g7

The TCR MyLocalId is not part of the UTCB. On SPARC v9 it is identical with the UTCB
address and can be loaded from register g7.

Message Registers (MRs)

Message registers MR 0 through MR 7 map to the local registers of the current window in the processor’s general purpose
register file for IPC and LIPC calls, otherwise they are located in the UTCB. The remaining message registers map to
memory locations in the UTCB. MR 0 starts at byte offset 512 in the UTCB, and successive message registers follow in
memory.

VIRTUAL REGISTERS 181

MR 0...7 MR 7 l7

MR 6 l6

MR 5 l5

MR 4 l4

MR 3 l3

MR 2 l2

MR 1 l1

MR 0 l0

MR 0...63 [UTCB fields]

MR 63 (64) +1016

...
...

MR 0 (64) ←− UTCB address + 512

Buffer Registers (BRs)

The buffer registers map to memory locations in the UTCB. BR 0 is at byte offset 248 in the UTCB, BR 1 at byte offset
256, etc.

BR 0...32 [UTCB fields]

BR 32 (64) +504

...
...

BR 1 (64) +256

BR 0 (64) ←− UTCB address + 248

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located at UTCB address + 80. . . UTCB address + 247. The appli-
cation can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the memory
contents within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

182 SYSTEMCALLS

H.2 Systemcalls [SPARC-v9]

The system-calls which are invoked by the jmpl instruction take the target of the calls from the system call link fields in
the kernel interface page (see page 2). Each system-call link value specifies an address relative to the kernel interface
page’s base address. One may invoke the system calls with any instruction that branches to the appropriate target, as long
as the return-address is contained in o7.

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the KIP.

The system call definitions below only specify the contexts of the general purpose registers. Except for the KERNELIN-
TERFACE system-call, the contents of user accessible state registers are assumed to be scratched. The floating-point
registers are assumed to be preserved accross system calls.

KERNELINTERFACE [Slow Systemcall]

− KernelInterface→

ta 0x70

– g1. . . g7 g1. . . g7 ≡
– o0 o0 KIP base address
– o1 o1 API Version
– o2 o2 API Flags
– o3 o3 Kernel ID
– o4 o7 ≡
– l0. . . l7 l0. . . l7 ≡
– i0. . . i7 i0. . . i7 ≡

EXCHANGEREGISTERS [Systemcall]

− Exchange Registers→

jmpl ExchangeRegisters

– g1 g1 ∼
– g2,g3 g2,g3 ≡

FLAGS g4 g4 FLAGS
– g5,g6 g5,g6 ∼

UTCB g7 g7 UTCB
dest o0 o0 result

control o1 o1 control
SP o2 o2 SP
IP o3 o3 IP

pager o4 o4 pager
UserDefinedHandle o5 o5 UserDefinedHandle

– o6, o7 o6, o7 ≡
– l0. . . l7 l0. . . l7 ≡
– i0. . . i0 i0. . . i0 ≡

“FLAGS” refers to the user-modifiable flags held in the SPARC v9 PSTATE register. At present only the CLE (current
little-endian) flag can be set.

SYSTEMCALLS 183

THREADCONTROL [Privileged Systemcall]

− Thread Control→

jmpl ThreadControl

– g1 g1 ∼
– g2,g3 g2,g3 ≡
– g4. . . g6 g4. . . g6 ∼

UTCB g7 g7 UTCB
dest o0 o0 result

space o1 o1 ∼
scheduler o2 o2 ∼

pager o3 o3 ∼
UtcbLocation o4 o4 ∼

– o5 o5 ∼
– o6, o7 o6, o7 ≡
– l0. . . l7 l0. . . l7 ≡
– i0. . . i7 i0. . . i7 ≡

SYSTEMCLOCK [Systemcall]

− SystemClock→

jmpl SystemClock

– g1 g1 ∼
– g2,g3 g2,g3 ≡
– g4. . . g6 g4. . . g6 ∼

UTCB g7 g7 UTCB
– o0 o0 clock
– o1. . . o5 o1. . . o5 ∼
– o6, o7 o6, o7 ≡
– l0. . . l7 l0. . . l7 ≡
– i0. . . i7 i0. . . i7 ≡

THREADSWITCH [Systemcall]

− ThreadSwitch→

jmpl ThreadSwitch

– g1 g1 ∼
– g2,g3 g2,g3 ≡
– g4. . . g6 g4. . . g6 ∼

UTCB g7 g7 UTCB
dest o0 o0 ∼

– o1. . . o5 o1. . . o5 ∼
– o6, o7 o6, o7 ≡
– l0. . . l7 l0. . . l7 ≡
– i0. . . i7 i0. . . i7 ≡

SCHEDULE [Systemcall]

− Schedule→

jmpl Schedule

– g1 g1 ∼
– g2,g3 g2,g3 ≡
– g4. . . g6 g4. . . g6 ∼

UTCB g7 g7 UTCB
dest o0 o0 result

time control o1 o1 time control
processor control o2 o2 ∼

priority o3 o3 ∼
preemption control o4 o4 ∼

– o5 o5 ∼
– o6, o7 o6, o7 ≡
– l0. . . l7 l0. . . l7 ≡
– i0. . . i7 i0. . . i7 ≡

184 SYSTEMCALLS

IPC [Systemcall]

− Ipc→

jmpl Ipc

– g1 g1 ∼
– g2,g3 g2,g3 ≡
– g4. . . g6 g4. . . g6 ∼

UTCB g7 g7 UTCB
to o0 o0 from

FromSpecifier o1 o1 ∼
Timeouts o2 o2 ∼

– o3. . . o5 o3. . . o5 ∼
– o6, o7 o6, o7 ≡

MR 0 l0 l0 MR 0

MR 1 l1 l1 MR 1

MR 2 l2 l2 MR 2

MR 3 l3 l3 MR 3

MR 4 l4 l4 MR 4

MR 5 l5 l5 MR 5

MR 6 l6 l6 MR 6

MR 7 l7 l7 MR 7

– i0. . . i5 i0. . . i5 ∼
– i6, i7 i6, i7 ≡

LIPC [Systemcall]

− Lipc→

jmpl Lipc

– g1 g1 ∼
– g2,g3 g2,g3 ≡
– g4. . . g6 g4. . . g6 ∼

UTCB g7 g7 UTCB
to o0 o0 from

FromSpecifier o1 o1 ∼
Timeouts o2 o2 ∼

– o3. . . o5 o3. . . o5 ∼
– o6, o7 o6, o7 ≡

MR 0 l0 l0 MR 0

MR 1 l1 l1 MR 1

MR 2 l2 l2 MR 2

MR 3 l3 l3 MR 3

MR 4 l4 l4 MR 4

MR 5 l5 l5 MR 5

MR 6 l6 l6 MR 6

MR 7 l7 l7 MR 7

– i0. . . i5 i0. . . i5 ∼
– i6, i7 i6, i7 ≡

UNMAP [Systemcall]

− Unmap→

jmpl Unmap

– g1 g1 ∼
– g2,g3 g2,g3 ≡
– g4. . . g6 g4. . . g6 ∼

UTCB g7 g7 UTCB
control o0 o0 ∼

– o1. . . o5 o1. . . o5 ∼
– o6, o7 o6, o7 ≡
– l0. . . l7 l0. . . l7 ≡
– i0. . . i7 i0. . . i7 ≡

SYSTEMCALLS 185

SPACECONTROL [Privileged Systemcall]

− Space Control→

jmpl SpaceControl

– g1 g1 ∼
– g2,g3 g2,g3 ≡
– g4. . . g6 g4. . . g6 ∼

UTCB g7 g7 UTCB
SpaceSpecifier o0 o0 result

control o1 o1 control
KernelInterfacePageArea o2 o2 ∼

UtcbArea o3 o3 ∼
Redirector o4 o4 ∼

– o5 o5 ∼
– o6, o7 o6, o7 ≡
– l0. . . l7 l0. . . l7 ≡
– i0. . . i7 i0. . . i7 ≡

PROCESSORCONTROL [Privileged Systemcall]

− Processor Control→

jmpl ProcessorControl

– g1 g1 ∼
– g2,g3 g2,g3 ≡
– g4. . . g6 g4. . . g6 ∼

UTCB g7 g7 UTCB
ProcessorNo o0 o0 result
InternalFreq o1 o1 ∼
ExternalFreq o2 o2 ∼

voltage o3 o3 ∼
– o4, o5 o4, o5 ∼
– o6, o7 o6, o7 ≡
– l0. . . l7 l0. . . l7 ≡
– i0. . . i7 i0. . . i7 ≡

MEMORYCONTROL [Privileged Systemcall]

−Memory Control→

jmpl MemoryControl

– g1 g1 ∼
– g2,g3 g2,g3 ≡
– g4. . . g6 g4. . . g6 ∼

UTCB g7 g7 UTCB
control o0 o0 result

attribute0 o1 o1 ∼
attribute1 o2 o2 ∼
attribute2 o3 o3 ∼
attribute3 o4 o4 ∼

– o5 o5 ∼
– o6, o7 o6, o7 ≡
– l0. . . l7 l0. . . l7 ≡
– i0. . . i7 i0. . . i7 ≡

186 SYSTEMCALLS

Appendix I

ARM Interface

188 VIRTUAL REGISTERS

I.1 Virtual Registers [ARM]

Thread Control Registers (TCRs)

TCRs are mapped to memory locations. They are implemented as part of the ARM-specific user-level thread control
block (UTCB). The address of the current thread’s UTCB will not change over the lifetime of the thread. The UTCB
address of the current thread can be read from the memory location 0xFF000000. UTCB objects of the current thread can
then be accessed as any other memory object. UTCBs of other threads must not be accessed, even if they are physically
accessible.

ThreadWord 1 (32) +44

ThreadWord 0 (32) +40

VirtualSender/ActualSender (32) +36

IntendedReceiver (32) +32

ErrorCode (32) +28

XferTimeouts (32) +24

∼ (16) cop flags (8) preempt flags (8) +20

ExceptionHandler (32) +16

Pager (32) +12

UserDefinedHandle (32) +8

ProcessorNo (32) +4

MyGlobalId (32) ←− UTCB address

MyLocalId = UTCB address (32) UTCB syscall

The TCR MyLocalId is not part of the UTCB. On ARM it is identical with the UTCB address
and can be obtained by a load from memory location 0xFF0000000.

Message Registers (MRs)

Message registers MR 0 through MR 4 map to the processor’s general purpose register file for IPC, LIPC and unmap calls.
The remaining message registers map to memory locations in the UTCB. MR 5 starts at byte offset 84 in the UTCB, and
successive message registers follow in memory.

The first five message registers are mapped to the registers r3 to r7. MR 5...63 are mapped to memory in the UTCB.

VIRTUAL REGISTERS 189

MR 0...4 MR 0 (32) r3

MR 1 (32) r4

MR 2 (32) r5

MR 3 (32) r6

MR 4 (32) r7

MR 5...63 [UTCB fields]

MR 63 (32) +316

...
...

MR 5 (32) ←− UTCB address + 84

Buffer Registers (BRs)

The buffer registers map to memory locations in the UTCB. BR 0 is at byte offset 320 in the UTCB, BR 1 at byte offset
324, etc.

BR 0...32 [UTCB fields]

BR 32 (32) +448

...
...

BR 1 (32) +324

BR 0 (32) ←− UTCB address + 320

UTCB Memory With Undefined Semantics

The kernel will associate no semantics with memory located at UTCB address + 452. . . UTCB address + 511. The
application can use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the
memory contents within this region may be overwritten during a system-call operating on message registers.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

190 SYSTEMCALLS

I.2 Systemcalls [ARM]

The system-calls, which are invoked by the bl instruction, take the target of the calls from the system call link fields in the
kernel interface page (see page 2). Each system-call link value specifies an address relative to the kernel interface page’s
base address. One may invoke the system calls with any instruction that branches to the appropriate target, as long as the
return-address is contained in r14.

The locations of the system-calls are fixed during the life of an application, although they may change outside of the life
of an application. It is not valid to prelink an application against a set of system call locations. The official locations are
always provided in the KIP.

The sp and lr registers are always preserved across system calls. Registers r8..r12 have undefined values following
system calls other than KernelInterface.

KERNELINTERFACE [Slow Systemcall]

− KernelInterface→

bl 0xFE0000B4

– r0 r0 KIP base address
– r1 r1 API Version
– r2 r2 API Flags
– r3 r3 Kernel ID
– r4 r4 ≡
– r5 r5 ≡
– r6 r6 ≡
– r7 r7 ≡

For this system-call all registers other than the output registers are preserved.

EXCHANGEREGISTERS [Systemcall]

− Exchange Registers→

bl ExchangeRegisters

dest r0 r0 result
control r1 r1 control

SP r2 r2 SP
IP r3 r3 IP

FLAGS r4 r4 FLAGS
UserDefinedHandle r5 r5 UserDefinedHandle

pager r6 r6 pager
– r7 r7 ∼

THREADCONTROL [Privileged Systemcall]

− Thread Control→

bl ThreadControl

dest r0 r0 result
space r1 r1 ∼

scheduler r2 r2 ∼
pager r3 r3 ∼
UTCB r4 r4 ∼

– r5 r5 ∼
– r6 r6 ∼
– r7 r7 ∼

SYSTEMCALLS 191

SYSTEMCLOCK [Systemcall]

− SystemClock→

bl SystemClock

– r0 r0 clock 0..31
– r1 r1 clock 32..63
– r2 r2 ∼
– r3 r3 ∼
– r4 r4 ∼
– r5 r5 ∼
– r6 r6 ∼
– r7 r7 ∼

THREADSWITCH [Systemcall]

− ThreadSwitch→

bl ThreadSwitch

dest r0 r0 ∼
– r1 r1 ∼
– r2 r2 ∼
– r3 r3 ∼
– r4 r4 ∼
– r5 r5 ∼
– r6 r6 ∼
– r7 r7 ∼

SCHEDULE [Systemcall]

− Schedule→

bl Schedule

dest r0 r0 result
TimeControl r1 r1 TimeControl

ProcessorControl r2 r2 ∼
priority r3 r3 ∼

PreemptionControl r4 r4 ∼
– r5 r5 ∼
– r6 r6 ∼
– r7 r7 ∼

IPC [Systemcall]

− Ipc→

bl Ipc

dest r0 r0 result
FromSpecifier r1 r1 ∼

Timeouts r2 r2 ∼
MR0 r3 r3 MR0

MR1 r4 r4 MR1

MR2 r5 r5 MR2

MR3 r6 r6 MR3

MR4 r7 r7 MR4

LIPC [Systemcall]

− Lipc→

bl Lipc

dest r0 r0 result
FromSpecifier r1 r1 ∼

Timeouts r2 r2 ∼
MR0 r3 r3 MR0

MR1 r4 r4 MR1

MR2 r5 r5 MR2

MR3 r6 r6 MR3

MR4 r7 r7 MR4

192 SYSTEMCALLS

UNMAP [Systemcall]

− Unmap→

bl Unmap

control r0 r0 ∼
– r1 r1 ∼
– r2 r2 ∼

MR0 r3 r3 MR0

MR1 r4 r4 MR1

MR2 r5 r5 MR2

MR3 r6 r6 MR3

MR4 r7 r7 MR4

SPACECONTROL [Privileged Systemcall]

− Space Control→

bl SpaceControl

SpaceSpecifier r0 r0 result
control r1 r1 control

KernelInterfacePageArea r2 r2 ∼
UtcbArea r3 r3 ∼

Redirector r4 r4 ∼
– r5 r5 ∼
– r6 r6 ∼
– r7 r7 ∼

PROCESSORCONTROL [Privileged Systemcall]

− Processor Control→

bl ProcessorControl

ProcessorNo r0 r0 result
InternalFreq r1 r1 ∼
ExternalFreq r2 r2 ∼

voltage r3 r3 ∼
– r4 r4 ∼
– r5 r5 ∼
– r6 r6 ∼
– r7 r7 ∼

MEMORYCONTROL [Privileged Systemcall]

−Memory Control→

bl MemoryControl

control r0 r0 result
attribute0 r1 r1 ∼
attribute1 r2 r2 ∼
attribute2 r3 r3 ∼
attribute3 r4 r4 ∼

– r5 r5 ∼
– r6 r6 ∼
– r7 r7 ∼

MEMORY ATTRIBUTES 193

I.3 Memory Attributes [ARM]

The ARM architecture supports the following memory/cache attribute values, to be used with the MEMORYCONTROL
system-call:

attribute value
Default 0
Uncached 1
Flush (I + D) 31

The default memory attributes specify cached access.
Before disabling the cache for a page, the software must ensure that all memory belonging to the target page is flushed

from the cache.

194 SPACE CONTROL

I.4 Space Control [ARM]

The SPACECONTROL system call has an architecture dependent control parameter to specify various address space char-
acteristics. For ARM, the control parameter has the following semantics.

Input Parameter

control 0 (25) PID (7)

PID Sets the PID register value that will be loaded for threads in this address space. The effect of this
is described in the Fast Context Switch Extension section of the ARM Architecture Reference
Manual.
All addresses supplied to and returned from kernel syscalls (e.g. UTCB location) correspond to
the MVA.

EXCEPTION MESSAGE FORMAT 195

I.5 Exception Message Format [ARM]

Syscall emulation exception message

Flags (32) MR 13

Syscall (32) MR 12

LR (32) MR 11

SP (32) MR 10

r7 (32) MR 9

r6 (32) MR 8

r5 (32) MR 7

r4 (32) MR 6

r3 (32) MR 5

r2 (32) MR 4

r1 (32) MR 3

r0 (32) MR 2

PC (32) MR 1

−5 (12) 0 (4) 0 (4) t = 0 (6) u = 13 (6) MR 0

On execution of an ARM SWI instruction, the above message is delivered to the thread’s exception handler.

The Syscall field contains the encoding of the instruction causing the system call exception. The exception handler can
decode the system call number from the lower 24 bits.

Generic Traps

Generic Trap Message To Exception Handler

196 EXCEPTION MESSAGE FORMAT

LocalID (32) MR 6

ErrorCode (32) MR 5

ExceptionNo (32) MR 4

Flags (32) MR 3

SP (32) MR 2

IP (32) MR 1

−5 (12) 0 (4) 0 (4) t = 0 (6) u = 6 (6) MR 0

The kernel synthesizes exception messages in response to architecture specific events. Some traps are handled by the
kernel and therefore do not generate exception messages. The kernel preserves all user state.

The following is a table of values for the Generic Trap ExceptionNo:

Exception ExceptionNo ErrorCode Delivered
Undefined instruction 1 Instruction Yes
Data abort 0x100 + (fault status) Fault address (external aborts/unhandled)
Reset exception No
FIQ exception No

Note, not all of these exceptions will be delivered via exception IPC. Some will be handled by the kernel. Delivered
exceptions are indicated in the last column of the table above.

BOOTING 197

I.6 Booting [ARM]

The kernel is provided as an ELF file and must be loaded at the physical load address defined in the ELF header. It must
begin execution at the corresponding physically addressed entry point with MMU disabled.

198 BOOTING

Appendix J

Generic BootInfo

200 GENERIC BOOTINFO

J.1 Generic BootInfo [Data Structure]

The generic BootInfo structure contains boot loader specific data such as loaded modules or files, location of system
tables, etc. The data structure can be located anywhere in memory, but must be aligned at a word size.

The BootInfo structure is a pure boot loader specific object. That is, the kernel does not associate any semantics with
its contents. A boot loader is free to choose whether to provide a BootInfo structure or not. Starting a system without a
generic BootInfo structure is perfectly valid.

First BootInfo Record First Entry

∼ Num Entries +10 / +20

First Entry Size Version Magic BootInfo

+C / +18 +8 / +10 +4 / +8 +0

The base address of the bootinfo structure is specified by the Bootinfo field in the kernel interface page (see page 4). Note
that the base address as specified by the BootInfo field is a physical address. An application running on virtual memory
must determine the location of the BootInfo structure within its own address space by other means.

BootInfo Description

Magic The magic number 0x14B0021D. The magic also determines the endianess of the structure (i.e.,
the value 0x1D02B014 indicates that the endian is wrong). The word size of the BootInfo
structure is defined by the word size specified in the kernel interface page (see page 3).

Version API version of the BootInfo structure. This document describes version 1. Note that any changes
in the BootInfo records themselves do not influence the version in the main BootInfo structure.
This enables BootInfo records to be added or modified without introducing major incompatibili-
ties with a program that parses the BootInfo structure. Only the added/modified BootInfo record
types are influenced by the update.

Size The size (in bytes) of the complete BootInfo structure, including all BootInfo records and data
referenced by these records.

First Entry Points to the first BootInfo record. First Entry is given as an address relative to the base address
of the BootInfo structure itself.

Num Entries Number of BootInfo records in the BootInfo structure.

Generic BootInfo Record
The exact structure of a BootInfo record is determined by the type of the record. Only the three
first words of the record are defined for all BootInfo record types.

Offset Next Version Type

+8 / +10 +4 / +8 +0

Type Specifies the type of the BootInfo record.

GENERIC BOOTINFO 201

Version Specifies the API version of the BootInfo record type. Increasing the version of a BootInfo
record type does not also require an increase in the main BootInfo version. Later versions of a
BootInfo record are guaranteed to be backwards compatible with older versions.

Offset Next The offset (in bytes) to the next BootInfo record. Note that the offset may vary from record to
record, even for records of the same type. This enables the boot loader to have variable length
records, place data in between records, or otherwise align records for ease of implementation.
It is wrong to assume that the offset associated with a particular version of a record type is
constant.

Convenience Programming Interface

#include <l4/bootinfo.h>

struct BOOTREC {Word raw [*] }

Bool BootInfo Valid (void* BootInfo)
Checks whether specified BootInfo structure is valid or not (i.e., whether the magic number and
the version number are correct).

Word BootInfo Size (void* BootInfo)
Delivers the size (in bytes) of the BootInfo structure. It is assumed that BootInfo specifies a valid
BootInfo structure.

BootRec* BootInfo FirstEntry (void* BootInfo)
Delivers the first BootInfo record of the BootInfo structure. It is assumed that BootInfo specifies
a valid BootInfo structure.

Word BootInfo Entries (void* BootInfo)
Delivers the number of BootInfo records in the BootInfo structure. It is assumed that BootInfo
specifies a valid BootInfo structure.

Word Type (BootRec* BootRec) [BootRec Type]
Delivers the type of the BootInfo record.

BootRec* Next (BootRec* BootRec) [BootRec Next]
Delivers the next BootInfo record. The value returned by the last BootInfo record in the BootInfo
structure is undefined.

202 BOOTINFO RECORDS

J.2 BootInfo Records [BootInfo]

BootInfo records can be listed in any order. This section lists currently defined BootInfo records. A program encountering
an unknown BootInfo record can skip past the record using the ubiquitous Offset Next field.

Simple Module The Simple Module BootInfo record specifies a binary file loaded into main memory by the
boot loader.

Cmdline Off Size +10 / +20

Start Offset Next version = 1 type = 0x1

+C / +18 +8 / +10 +4 / +8 +0

Start Physical address of first byte in loaded module.

Size Size of loaded module (in bytes).

Cmdline Off Address of command line associated with loaded module, or 0 if no command line exists. Ad-
dress is specified relative to base address of current BootInfo record.

Simple Executable The Simple Executable BootInfo record specifies an executable file which has been loaded into
main memory and relocated by the boot loader. The record can only specify simple executables
with single code, data, and bss sections.

Cmdline Off Label Flags Initial IP +30 / +60

Bss.Size Bss.Vstart Bss.Pstart Data.Size +20 / +40

Data.Vstart Data.Pstart Text.Size Text.Vstart +10 / +20

Text.Pstart Offset Next version = 1 type = 0x2

+C / +18 +8 / +10 +4 / +8 +0

Pstart Physical address of first byte in code/data/bss section of the loaded executable.

Vstart Virtual address of first byte in code/data/bss section of the loaded executable.

Size Size of code/data/bss section (in bytes).

Initial IP Virtual address of entry point for loaded executable.

Flags Flags for the loaded executable (defined by boot loader or application programs). Note that
regular applications may not necessarily have write permissions on the Flags field.

Label Freely available word (defined by boot loader or application programs). Note that regular appli-
cations may not necessarily have write permissions on the Label field.

Cmdline Off Address of command line associated with loaded executable, or 0 if no command line exists.
Address is specified relative to base address of current BootInfo record.

BOOTINFO RECORDS 203

EFI Tables The EFI Tables BootInfo record specifies the location and size of the EFI memory map, and the
location of the EFI system table.

Memdesc Version Memdesc Size Memmap Size Memmap +10 / +20

Systab Offset Next version = 1 type = 0x101

+C / +18 +8 / +10 +4 / +8 +0

Systab Physical address of EFI system table, or 0 if EFI system table is not present.

Memmap Physical address of EFI memory map. Undefined if Memmap Size = 0.

Memmap Size Size (in bytes) of the EFI memory map, or 0 if EFI memory map is not present.

Memdesc Size Size (in bytes) of descriptor entries in the EFI memory map. Undefined if Memmap Size = 0.

Memdesc Version Version of descriptor entries in the EFI memory map. Undefined if Memmap Size = 0.

Multiboot info The Multiboot info BootInfo record specifies the location of the first byte in the multiboot header.

Multiboot Addr Offset Next version = 1 type = 0x102

+C / +18 +8 / +10 +4 / +8 +0

Multiboot Addr Physical address of first byte in multiboot header.

Convenience Programming Interface

#include <l4/bootinfo.h>

Word BootInfo Module

Word BootInfo SimpleExec

Word BootInfo EFITables

Word BootInfo Multiboot

Word Module Start (BootRec* b)

Word Module Size (BootRec* b)
Delivers the start and size of the specified boot module.

char* Module Cmdline (BootRec* b)
Delivers the command line of the specified boot module, or 0 if command line does not exist.

Word SimpleExec TextPstart (BootRec* b)

Word SimpleExec TextVstart (BootRec* b)

Word SimpleExec TextSize (BootRec* b)

Word SimpleExec DataPstart (BootRec* b)

Word SimpleExec DataVstart (BootRec* b)

Word SimpleExec DataSize (BootRec* b)

Word SimpleExec BssPstart (BootRec* b)

Word SimpleExec BssVstart (BootRec* b)

204 BOOTINFO RECORDS

Word SimpleExec BssSize (BootRec* b)
Delivers physical start address, virtual start address, and size of the code/data/bss section of the
specified executable.

Word SimpleExec InitialIP (BootRec* b)
Delivers virtual address of entry point for the specified executable.

Word SimpleExec Flags (BootRec* b)

void SimpleExec Set Flags (BootRec* b, Word w)
Delivers/sets the flags field for the specified executable.

Word SimpleExec Label (BootRec* b)

void SimpleExec Set Label (BootRec* b, Word w)
Delivers/sets the label field for the specified executable.

char* SimpleExec Cmdline (BootRec* b)
Delivers the command line of the specified executable, or 0 if command line does not exist.

Word EFI Systab (BootRec* b)
Delivers the EFI system table, or 0 if system table not present.

Word EFI Memmap (BootRec* b)

Word EFI MemmapSize (BootRec* b)

Word EFI MemdescSize (BootRec* b)

Word EFI MemdescVersion (BootRec* b)
Delivers location of the EFI memory map, size of memory map, size of memory map descriptor
entries, and version of memory map descriptor entries. If EFI MemmapSize () delivers 0, the
other return values are undefined.

Word MBI Address (BootRec* b)
Delivers the physical location of the first byte in the multiboot header.

Appendix K

Development Remarks
These remarks illuminate the design process from version 2 to version 4.

K.1 Exception Handling

The current model decided upon for exception handling in L4 is to associate an exception handler thread with each thread
in the system (see page 70). This model was chosen because it allowed us to handle exceptions generically without
introducing any new concepts into the API. It also closely resembles the current page fault handling model.

Another model for exception handling is to use callbacks. Using this model an instruction pointer for a callback
function and a pointer to an exception state save area is associated with each thread. Upon catching an exception the
kernel stores the cause of the exception into the save area and transfers execution to the exception callback function.

It is evident that the callback model can be faster than the IPC model because the callback model may require only
one control transfer into the kernel whereas the IPC model will require at least two. Nevertheless, the IPC model was
chosen because it introduces no new mechanisms into the kernel, and we are currently not aware of any real life sce-
nario where the extra performance gains you very much. There exists a challenge to prove these claims wrong. See
http://l4hq.org/fun/ for the rules of the challenge.

http://l4hq.org/fun/

206 APPENDIX K. DEVELOPMENT REMARKS

Table of Procs, Types, and Constants

used system call page

!= (CacheAllocationHint l, r) Bool –none– 58
!= (Clock l, r) Bool –none– 26
!= (MsgTag l, r) Bool –none– 50
!= (ThreadId l, r) Bool –none– 15
!= (Time l, r) Bool –none– 29
+ (Acceptor l, r) Acceptor –none– 59
+ (Clock l, r) Clock –none– 26
+ (Clock l, int r) Clock –none– 26
+ (Clock l, Word64 r) Clock –none– 26
+ (Fpage f, Word AccessRights) Fpage –none– 39
+ (MsgTag t, Word label) MsgTag –none– 50
+ (StringItem s, CacheAllocationHint h) StringItem –none– 58
+ (Time l, r) Time –none– 29
+ (Time l, Word r) Time –none– 29
+= (Acceptor l, r) Acceptor –none– 59
+= (Fpage f, Word AccessRights) Fpage –none– 39
+= (MsgTag t, Word label) MsgTag –none– 50
+= (StringItem& dest, StringItem AdditionalSubstring) StringItem & –none– 57
+= (StringItem& dest, void* AdditionalSubstringAddress) StringItem & –none– 57
+= (StringItem s, CacheAllocationHint h) StringItem –none– 58
+= (Time l, r) Time –none– 29
+= (Time l, Word r) Time –none– 29
− (Acceptor l, r) Acceptor –none– 59
− (Clock l, r) Clock –none– 26
− (Clock l, int r) Clock –none– 26
− (Clock l, Word64 r) Clock –none– 26
− (Fpage f, Word AccessRights) Fpage –none– 39
− (Time l, r) Time –none– 29
− (Time l, Word r) Time –none– 29
−= (Acceptor l, r) Acceptor –none– 59
−= (Fpage f, Word AccessRights) Fpage –none– 39
−= (Time l, r) Time –none– 29
−= (Time l, Word r) Time –none– 29
< (Clock l, r) Bool –none– 26
< (Time l, r) Bool –none– 29
<= (Clock l, r) Bool –none– 26
<= (Time l, r) Bool –none– 29
== (CacheAllocationHint l, r) Bool –none– 58
== (Clock l, r) Bool –none– 26
== (MsgTag l, r) Bool –none– 50
== (ThreadId l, r) Bool –none– 15
== (Time l, r) Bool –none– 29
> (Clock l, r) Bool –none– 26
> (Time l, r) Bool –none– 29
>= (Clock l, r) Bool –none– 26
>= (Time l, r) Bool –none– 29
AbortIpc and stop (ThreadId t) ThreadState EXCHANGEREGISTERS 21
AbortIpc and stop (ThreadId t, Word& sp, ip, flags) ThreadState EXCHANGEREGISTERS 21
AbortReceive and stop (ThreadId t) ThreadState EXCHANGEREGISTERS 21

208 TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page

AbortReceive and stop (ThreadId t, Word& sp, ip, flags) ThreadState EXCHANGEREGISTERS 21
AbortSend and stop (ThreadId t) ThreadState EXCHANGEREGISTERS 21
AbortSend and stop (ThreadId t, Word& sp, ip, flags) ThreadState EXCHANGEREGISTERS 21
Accepted () Acceptor –none– 60
Acceptor data type –n/a– 59
Accept (Acceptor a) void –none– 60
Accept (Acceptor a, MsgBuffer& b) void –none– 60
ACPIMemoryType Word const –n/a– 117
ActualSender () ThreadId –none– 17
ActualSender () ThreadId –none– 67
Address (Fpage f) Word –none– 39
AllocateNewCacheLines CacheAllocationHint const –n/a– 173
AllocateNewCacheLines CacheAllocationHint const –n/a– 99
AllocateOnlyNewL1CacheLines CacheAllocationHint const –n/a– 173
AllocateOnlyNewL1CacheLines CacheAllocationHint const –n/a– 99
anylocalthread ThreadId const –n/a– 15
anythread ThreadId const –n/a– 15
ApiFlags () Word –none– 8
ApiVersion () Word –none– 8
Append (MsgBuffer& b, StringItem * s) void –none– 60
Append (MsgBuffer& b, StringItem s) void –none– 60
Append (Msg& msg, GrantItem g) void –none– 51
Append (Msg& msg, MapItem m) void –none– 51
Append (Msg& msg, StringItem& s) void –none– 51
Append (Msg& msg, StringItem s) void –none– 51
Append (Msg& msg, Word w) void –none– 51
ArchitectureSpecificMemoryType Word const –n/a– 9
AssociateInterrupt (ThreadId InterruptThread, InterruptHandler) Word –none– 24
BootInfo EFITables Word const –n/a– 203
BootInfo Entries (void* BootInfo) Word –none– 201
BootInfo FirstEntry (void* BootInfo) BootRec* –none– 201
BootInfo Module Word const –n/a– 203
BootInfo Multiboot Word const –n/a– 203
BootInfo SimpleExec Word const –n/a– 203
BootInfo Size (void* BootInfo) Word –none– 201
BootInfo Valid (void* BootInfo) Bool –none– 201
BootInfo (void* KernelInterface) Word –none– 9
BootLoaderSpecificMemoryType Word const –n/a– 9
BootRec data type –n/a– 201
CacheAllocationHint (StringItem s) CacheAllocationHint –none– 58
CacheAllocationHint data type –n/a– 57
CacheNonTemporalAllLevels CacheAllocationHint const –n/a– 115
CacheNonTemporalL1 CacheAllocationHint const –n/a– 115
CacheNonTemporalL2 CacheAllocationHint const –n/a– 115
CachingEnabledMemory Word const –n/a– 126
CachingInhibitedMemory Word const –n/a– 126
Call (ThreadId to) MsgTag IPC 65
Call (ThreadId to, Time SndTimeout, RcvTimeout) MsgTag IPC 66
Clear (MsgBuffer& b) void –none– 60
Clear (Msg& msg) void –none– 51
Clock data type –n/a– 26
Clr CopFlag (Word n) void –none– 17
Clr CopFlag (Word n) void –none– 71
CompleteAddressSpace Fpage const –n/a– 39
CompoundString (StringItem& s) Bool –none– 57
ConventionalMemoryType Word const –n/a– 9
DeassociateInterrupt (ThreadId InterruptThread) Word –none– 24
DedicatedMemoryType Word const –n/a– 9
DefaultMemory Word const –n/a– 100
DefaultMemory Word const –n/a– 116
DefaultMemory Word const –n/a– 126
DefaultMemory Word const –n/a– 174
DefaultMemory Word const –n/a– 75

TABLE OF PROCS, TYPES, AND CONSTANTS 209

used system call page

DisablePreemptionFaultException () Bool –none– 35
DisablePreemption () Bool –none– 35
DoNotAllocateNewCacheLines CacheAllocationHint const –n/a– 173
DoNotAllocateNewCacheLines CacheAllocationHint const –n/a– 99
EFI MemdescSize (BootRec* b) Word –none– 204
EFI MemdescVersion (BootRec* b) Word –none– 204
EFI MemmapSize (BootRec* b) Word –none– 204
EFI Memmap (BootRec* b) Word –none– 204
EFI Systab (BootRec* b) Word –none– 204
EnablePreemptionFaultException () Bool –none– 35
EnablePreemption () Bool –none– 35
ErrInvalidParam Word const –n/a– 34
ErrInvalidParam Word const –n/a– 75
ErrInvalidScheduler Word const –n/a– 24
ErrInvalidSpace Word const –n/a– 24
ErrInvalidSpace Word const –n/a– 45
ErrInvalidThread Word const –n/a– 21
ErrInvalidThread Word const –n/a– 24
ErrInvalidThread Word const –n/a– 33
ErrKipArea Word const –n/a– 45
ErrNoMem Word const –n/a– 24
ErrNoPrivilege Word const –n/a– 24
ErrNoPrivilege Word const –n/a– 33
ErrNoPrivilege Word const –n/a– 45
ErrNoPrivilege Word const –n/a– 73
ErrNoPrivilege Word const –n/a– 75
ErrorCode () Word –none– 17
ErrorCode () Word –none– 21
ErrorCode () Word –none– 24
ErrorCode () Word –none– 33
ErrorCode () Word –none– 45
ErrorCode () Word –none– 66
ErrorCode () Word –none– 73
ErrorCode () Word –none– 75
ErrUtcbArea Word const –n/a– 24
ErrUtcbArea Word const –n/a– 45
ExceptionHandler () ThreadId –none– 17
ExceptionHandler () ThreadId –none– 70
ExchangeRegisters (ThreadId dest, Word control, sp, ip, flags, UserDe-
finedHandle, ThreadId pager, Word& old control, old sp, old ip, old flags,
old UserDefinedHandle, ThreadId& old pager) ThreadId

EXCHANGEREGISTERS 20

eXecutable Word const –n/a– 39
ExternalFreq (ProcDesc& p) Word –none– 10
Feature (void* KernelInterface, Word num) char* –none– 9
Flush (Fpage f) Fpage UNMAP 42
Flush (Word n, Fpage& [n] fpages) void UNMAP 42
FpageLog2 (Word BaseAddress, int Log2FpageSize < 64) Fpage –none– 39
Fpage (Word BaseAddress, int FpageSize ≥ 1K) Fpage –none– 39
Fpage data type –n/a– 38
FullyAccessible Word const –n/a– 39
GetStatus (Fpage f) Fpage –none– 42
Get (Msg& msg, Word& ut, {MapItem, GrantItem, StringItem}& Items) void –none– 51
Get (Msg& msg, Word t, GrantItem& g) Word –none– 52
Get (Msg& msg, Word t, MapItem& m) Word –none– 52
Get (Msg& msg, Word t, StringItem& s) Word –none– 52
Get (Msg& msg, Word u) Word –none– 52
Get (Msg& msg, Word u, Word& w) void –none– 52
GlobalId (ThreadId t) ThreadId EXCHANGEREGISTERS 15
GlobalId (ThreadId t) ThreadId EXCHANGEREGISTERS 20
GlobalId (Word threadno, version) ThreadId –none– 15
GlobalMemory Word const –n/a– 126
GrantItem (Fpage f, Word SndBase) GrantItem –none– 55
GrantItem (GrantItem g) Bool –none– 55

210 TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page

GrantItem data type –n/a– 55
GuardedMemory Word const –n/a– 126
High (MemoryDesc& m) Word –none– 9
IntendedReceiver () ThreadId –none– 17
IntendedReceiver () ThreadId –none– 66
InternalFreq (ProcDesc& p) Word –none– 10
IoFpageLog2 (Word BaseAddress, int Log2FpageSize <= 16) Fpage –none– 172
IoFpageLog2 (Word BasePort, int Log2FpageSize <= 16) Fpage –none– 97
IoFpagePort (Fpage f) Word –none– 97
IoFpageSizeLog2 (Fpage f) Word –none– 97
IoFpageSize (Fpage f) Word –none– 97
IoFpage (Word BaseAddress, int FpageSize) Fpage –none– 172
IoFpage (Word BasePort, int FpageSize) Fpage –none– 97
IpcFailed (MsgTag t) Bool –none– 66
IpcPropagated (MsgTag t) Bool –none– 66
IpcRedirected (MsgTag t) Bool –none– 66
IpcSucceeded (MsgTag t) Bool –none– 66
IpcXcpu (MsgTag t) Bool –none– 66
Ipc (ThreadId to, FromSpecifier, Word Timeouts, ThreadId& from) MsgTag IPC 65
IsGlobalId (ThreadId t) Bool –none– 15
IsIoFpage (Fpage f) Bool –none– 97
IsLocalId (ThreadId t) Bool –none– 15
IsNilFpage (Fpage f) Bool –none– 39
IsNilThread (ThreadId t) Bool –none– 15
IsVirtual (MemoryDesc& m) Bool –none– 9
KernelGenDate (void* KernelInterface, Word& year, month, day) void –none– 8
KernelId () Word –none– 8
KernelInterface () void* KERNELINTERFACE 8
KernelInterface (Word& ApiVersion, ApiFlags, KernelId) void * KERNELINTERFACE 8
KernelSupplier (void* KernelInterface) Word –none– 8
KernelVersionString (void* KernelInterface) char* –none– 9
KernelVersion (void* KernelInterface) Word –none– 8
KipAreaSizeLog2 (void* KernelInterface) Word –none– 9
Label (Msg& msg) Word –none– 51
Label (Msg Tag t) Word –none– 50
LargeSpace Word const –n/a– 98
Lcall (ThreadId to) MsgTag LIPC 66
Lipc (ThreadId to, FromSpecifier, Word Timeouts, ThreadId& from) MsgTag LIPC 65
LoadBRs (int i, k, Word& [k]) void –none– 11
LoadBRs (int i, k, Word& [k]) void –none– 60
LoadBR (int i, Word w) void –none– 11
LoadBR (int i, Word w) void –none– 60
LoadMRs (int i, k, Word& [k] w) void –none– 11
LoadMRs (int i, k, Word& [k] w) void –none– 52
LoadMR (int i, Word w) void –none– 11
LoadMR (int i, Word w) void –none– 52
Load (Msg& msg) void –none– 51
LocalId (ThreadId t) ThreadId EXCHANGEREGISTERS 15
LocalId (ThreadId t) ThreadId EXCHANGEREGISTERS 20
LocalMemory Word const –n/a– 126
Low (MemoryDesc& m) Word –none– 9
LreplyWait (ThreadId to, ThreadId& from) MsgTag LIPC 66
MapGrantItems (Acceptor a) Bool –none– 60
MapGrantItems (Fpage RcvWindow) Acceptor –none– 59
MapItem (Fpage f, Word SndBase) MapItem –none– 53
MapItem (MapItem m) Bool –none– 54
MapItem data type –n/a– 53
MBI Address (BootRec* b) Word –none– 204
MemoryControl (Word control, Word& attributes[4]) Word MEMORYCONTROL 75
MemoryDesc (void* KernelInterface, Word num) MemoryDesc* –none– 9
MemoryDesc data type –n/a– 8
Module Cmdline (BootRec* b) char* –none– 203
Module Size (BootRec* b) Word –none– 203

TABLE OF PROCS, TYPES, AND CONSTANTS 211

used system call page

Module Start (BootRec* b) Word –none– 203
MsgBuffer data type –n/a– 60
MsgTag () MsgTag –none– 50
MsgTag (Msg& msg) MsgTag –none– 51
MsgTag data type –n/a– 50
Msg data type –n/a– 51
MyGlobalId () ThreadId –none– 15
MyGlobalId () ThreadId –none– 17
MyLocalId () ThreadId –none– 15
MyLocalId () ThreadId –none– 17
Myself () ThreadId –none– 15
Myself () ThreadId –none– 17
NaTPageMemory Word const –n/a– 116
Never Time const –n/a– 28
Next (BootRec* BootRec) BootRec* –none– 201
Nilpage Fpage const –n/a– 39
Niltag MsgTag const –n/a– 50
nilthread ThreadId const –n/a– 15
NoAccess Word const –n/a– 39
NumMemoryDescriptors (void* KernelInterface) Word –none– 8
NumProcessors (void* KernelInterface) Word –none– 8
PageRights (void* KernelInterface) Word –none– 8
Pager () ThreadId –none– 17
Pager (ThreadId t) ThreadId EXCHANGEREGISTERS 20
PageSizeMask (void* KernelInterface) Word –none– 8
PAL Call (Word idx, a1, a2, a3, Word& r1, r2, r3) Word PAL CALL 108
PCIConfigFpageLog2 (Word BaseAddress, int Log2FpageSize < 64) Fpage –none– 114
PCIConfigFpage (Word BaseAddress, int FpageSize ≥ 256) Fpage –none– 114
PreemptionPending () Bool –none– 35
ProcDesc (void* KernelInterface, Word num) ProcDesc* –none– 9
ProcDesc data type –n/a– 8
ProcessorControl (Word ProcessorNo, InternalFrequency, ExternalFrequency,
voltage) Word

–none– 73

ProcessorNo () Word –none– 17
Put (Msg& msg, Word l, int u, Word& [u] ut, int t, {MapItem, GrantItem, StringItem
}& Items) void

–none– 51

Put (Msg& msg, Word t, GrantItem g) void –none– 52
Put (Msg& msg, Word t, MapItem m) void –none– 51
Put (Msg& msg, Word t, StringItem& s) void –none– 52
Put (Msg& msg, Word t, StringItem s) void –none– 52
Put (Msg& msg, Word u, Word w) void –none– 51
RcvWindow (Acceptor a) Fpage –none– 60
Readable Word const –n/a– 38
ReadeXecOnly Word const –n/a– 39
ReadPrecision (void* KernelInterface) Word –none– 9
Receive (ThreadId from) MsgTag IPC 66
Receive (ThreadId from, Time RcvTimeout) MsgTag IPC 66
ReplyWait (ThreadId to, ThreadId& from) MsgTag IPC 66
ReplyWait (ThreadId to, Time RcvTimeout, ThreadId& from) MsgTag IPC 66
Reply (ThreadId to) MsgTag IPC 66
ReservedMemoryType Word const –n/a– 9
Rights (Fpage f) Word –none– 39
SAL Call (Word idx, a1, a2, a3, a4, a5, a6, Word& r1, r2, r3) Word SAL CALL 108
SAL PCI ConfigRead (Word address, size, Word& value) Word SAL CALL 108
SAL PCI ConfigWrite (Word address, size, value) Word SAL CALL 108
SameThreads (ThreadId l, r) Bool EXCHANGEREGISTERS 15
SchedulePrecision (void* KernelInterface) Word –none– 9
Schedule (ThreadId dest, Word TimeControl, ProcessorControl, prio, Preemption-
Control, Word& old TimeControl) Word

SCHEDULE 33

Send (ThreadId to) MsgTag IPC 66
Send (ThreadId to, Time SndTimeout) MsgTag IPC 66
Set CopFlag (Word n) void –none– 17
Set CopFlag (Word n) void –none– 71

212 TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page

Set ExceptionHandler (ThreadId new) void –none– 70
Set ExceptionHandler (ThreadId NewHandler) void –none– 17
Set Label (Msg& msg, Word label) void –none– 51
Set MsgTag (MsgTag t) void –none– 50
Set MsgTag (Msg& msg, MsgTag t) void –none– 51
Set PageAttribute (Fpage f, Word attribute) Word MEMORYCONTROL 75
Set Pager (ThreadId NewPager) void –none– 17
Set Pager (ThreadId t, p) void EXCHANGEREGISTERS 20
Set PagesAttributes (Word n, Fpage& [n] fpages, Word& [4] attributes) Word MEMORYCONTROL 75
Set PreemptionDelay (ThreadId dest, Word sensitivePrio, Word maxDelay) Word –none– 33
Set Priority (ThreadId dest, Word prio) Word –none– 33
Set ProcessorNo (ThreadId dest, Word ProcessorNo) Word –none– 33
Set Propagation (MsgTag& t) void –none– 67
Set Rights (Fpage& f, Word AccessRights) void –none– 39
Set Timeslice (ThreadId dest, Time ts, Time tq) Word –none– 33
Set UserDefinedHandle (ThreadId t, Word handle) void EXCHANGEREGISTERS 20
Set UserDefinedHandle (Word NewValue) void –none– 17
Set VirtualSender (ThreadId t) void –none– 17
Set VirtualSender (ThreadId t) void –none– 67
Set XferTimeouts (Word NewValue) void –none– 17
SharedMemoryType Word const –n/a– 9
SimpleExec BssPstart (BootRec* b) Word –none– 203
SimpleExec BssSize (BootRec* b) Word –none– 204
SimpleExec BssVstart (BootRec* b) Word –none– 203
SimpleExec Cmdline (BootRec* b) char* –none– 204
SimpleExec DataPstart (BootRec* b) Word –none– 203
SimpleExec DataSize (BootRec* b) Word –none– 203
SimpleExec DataVstart (BootRec* b) Word –none– 203
SimpleExec Flags (BootRec* b) Word –none– 204
SimpleExec InitialIP (BootRec* b) Word –none– 204
SimpleExec Label (BootRec* b) Word –none– 204
SimpleExec Set Flags (BootRec* b, Word w) void –none– 204
SimpleExec Set Label (BootRec* b, Word w) void –none– 204
SimpleExec TextPstart (BootRec* b) Word –none– 203
SimpleExec TextSize (BootRec* b) Word –none– 203
SimpleExec TextVstart (BootRec* b) Word –none– 203
SizeLog2 (Fpage f) Word –none– 39
Size (Fpage f) Word –none– 39
Sleep (Time t) void IPC 66
SmallSpace (Word location, size) Word –none– 98
SndBase (GrantItem g) Word –none– 55
SndBase (MapItem m) Word –none– 54
SndFpage (GrantItem g) Fpage –none– 55
SndFpage (MapItem m) Fpage –none– 54
SpaceControl (ThreadId SpaceSpecifier, Word control, Fpage KernelInter-
facePageArea, UtcbArea, ThreadId Redirector, Word& old Control) Word

SPACECONTROL 45

SpeculativeMemory Word const –n/a– 126
Start (ThreadId t) void EXCHANGEREGISTERS 21
Start (ThreadId t, Word sp, ip) void EXCHANGEREGISTERS 21
Start (ThreadId t, Word sp, ip, flags) void EXCHANGEREGISTERS 21
Stop (ThreadId t) ThreadState EXCHANGEREGISTERS 21
Stop (ThreadId t, Word& sp, ip, flags) ThreadState EXCHANGEREGISTERS 21
StoreBRs (int i, k, Word& [k]) void –none– 11
StoreBRs (int i, k, Word& [k]) void –none– 60
StoreBR (int i, Word& w) void –none– 11
StoreBR (int i, Word& w) void –none– 60
StoreMRs (int i, k, Word& [k] w) void –none– 11
StoreMRs (int i, k, Word& [k] w) void –none– 52
StoreMR (int i, Word& w) void –none– 11
StoreMR (int i, Word& w) void –none– 52
Store (MsgTag t, Msg& msg) void –none– 51
StringItemsAcceptor Acceptor const –n/a– 59
StringItems (Acceptor a) Bool –none– 60

TABLE OF PROCS, TYPES, AND CONSTANTS 213

used system call page

StringItem (int size, void* address) StringItem –none– 57
StringItem (StringItem& s) Bool –none– 57
StringItem data type –n/a– 57
Substrings (StringItem& s) Word –none– 57
Substring (StringItem& s, Word n) void* –none– 57
SystemClock () Clock SYSTEMCLOCK 27
ThreadControl (ThreadId dest, SpaceSpecifier, Scheduler, Pager, void* UtcbLoca-
tion) Word

THREADCONTROL 24

ThreadIdBits (void* KernelInterface) Word –none– 8
ThreadIdSystemBase (void* KernelInterface) Word –none– 8
ThreadIdUserBase (void* KernelInterface) Word –none– 9
ThreadId data type –n/a– 15
ThreadNo (ThreadId t) Word –none– 15
ThreadState data type –n/a– 21
ThreadSwitch (ThreadId dest) void THREADSWITCH 30
ThreadWasHalted (ThreadState s) Bool –none– 21
ThreadWasIpcing (ThreadState s) Bool –none– 21
ThreadWasReceiving (ThreadState s) Bool –none– 21
ThreadWasSending (ThreadState s) Bool –none– 21
Timeouts (Time SndTimeout, RcvTimeout) Word –none– 67
TimePeriod (Word64 microseconds) Time –none– 28
TimePoint (Clock at) Time –none– 29
Timeslice (ThreadId dest, Time & ts, Time & tq) Word –none– 33
Time data type –n/a– 28
TypedWords (Msg Tag t) Word –none– 50
Type (BootRec* BootRec) Word –none– 201
Type (MemoryDesc& m) Word –none– 9
UncacheableExportedMemory Word const –n/a– 116
UncacheableMemory Word const –n/a– 100
UncacheableMemory Word const –n/a– 116
UncacheableMemory Word const –n/a– 174
UndefinedMemoryType Word const –n/a– 9
Unmap (Fpage f) Fpage UNMAP 41
Unmap (Word n, Fpage& [n] fpages) void UNMAP 41
Unmap (Word control) void UNMAP 41
UntypedWordsAcceptor Acceptor const –n/a– 59
UntypedWords (Msg Tag t) Word –none– 50
UseDefaultCacheLineAllocation CacheAllocationHint const –n/a– 115
UseDefaultCacheLineAllocation CacheAllocationHint const –n/a– 173
UseDefaultCacheLineAllocation CacheAllocationHint const –n/a– 57
UseDefaultCacheLineAllocation CacheAllocationHint const –n/a– 99
UserDefinedHandle () Word –none– 17
UserDefinedHandle (ThreadId t) Word EXCHANGEREGISTERS 20
UtcbAlignmentLog2 (void* KernelInterface) Word –none– 9
UtcbAreaSizeLog2 (void* KernelInterface) Word –none– 9
UtcbSize (void* KernelInterface) Word –none– 9
Version (ThreadId t) Word –none– 15
Wait (ThreadId& from) MsgTag IPC 66
Wait (Time RcvTimeout, ThreadId& from) MsgTag IPC 66
WaseXecuted (Fpage f) Bool –none– 42
WasReferenced (Fpage f) Bool –none– 42
WasWritten (Fpage f) Bool –none– 42
Writable Word const –n/a– 38
WriteBackMemory Word const –n/a– 100
WriteBackMemory Word const –n/a– 116
WriteBackMemory Word const –n/a– 126
WriteBackMemory Word const –n/a– 174
WriteCoalescingMemory Word const –n/a– 116
WriteCombiningMemory Word const –n/a– 100
WriteCombiningMemory Word const –n/a– 174
WriteProtectedMemory Word const –n/a– 100
WriteProtectedMemory Word const –n/a– 174
WriteThroughMemory Word const –n/a– 100

214 TABLE OF PROCS, TYPES, AND CONSTANTS

used system call page

WriteThroughMemory Word const –n/a– 126
WriteThroughMemory Word const –n/a– 174
XferTimeouts () Word –none– 17
Yield () void THREADSWITCH 30
ZeroTime Time const –n/a– 28

Index

!=, 15, 26, 29
+, 26, 29, 39, 50, 58, 59
+=, 29, 39, 50, 57–59
−, 26, 29, 39, 59
– (ignored), vii
−=, 29, 39, 59
<, 26, 29
<=, 26, 29
≡ (unchanged), vii
==, 15, 26, 29, 50, 58
>, 26, 29
>=, 26, 29
∼ (undefined), vii

σ0, see sigma0

AbortIpc and stop, 21
AbortReceive and stop, 21
AbortSend and stop, 21
Accept, 60
Accepted, 60
acceptor, 59
ACPIMemoryType, 117
ActualSender, 17, 67
Address, 39
address space

creation/deletion, 43
initial, 83

AllocateNewCacheLines, 99, 173
AllocateOnlyNewL1CacheLines, 99, 173
anylocalthread, 15
anythread, 15
ApiFlags, 8
ApiVersion, 8
Append, 51, 60
ArchitectureSpecificMemoryType, 9
AssociateInterrupt, 24

BootInfo, 9
BootInfo EFITables, 203
BootInfo Entries, 201
BootInfo FirstEntry, 201
BootInfo Module, 203
BootInfo Multiboot, 203
BootInfo SimpleExec, 203
BootInfo Size, 201
BootInfo Valid, 201
booting, 86–88

alpha, 150
amd64, 177
arm, 197
ia32, 103
mips64, 162
powerpc, 130
ppc64, 142

BootLoaderSpecificMemoryType, 9

BR, see buffer registers
buffer registers, 59

alpha, 145
amd64, 165–166
arm, 189
ia32, 91–92
ia64, 107
mips64, 153
powerpc, 121
ppc64, 133
sparc64, 181

cacheability, 56, 99, 100, 115, 116, 126, 139, 159, 173,
174, 193

CacheAllocationHint, 58
CacheNonTemporalAllLevels, 115
CacheNonTemporalL1, 115
CacheNonTemporalL2, 115
CachingEnabledMemory, 126
CachingInhibitedMemory, 126
Call, 65, 66
Clear, 51, 60
clock, 26

reading, 27
Clr CopFlag, 17, 71
CompleteAddressSpace, 39
CompoundString, 57
convenience programming interface, vi
ConventionalMemoryType, 9
coprocessors, 71

DeassociateInterrupt, 24
debug registers, 102, 176
DedicatedMemoryType, 9
DefaultMemory, 75, 100, 116, 126, 174
DisablePreemption, 35
DisablePreemptionFaultException, 35
DoNotAllocateNewCacheLines, 99, 173

EFI MemdescSize, 204
EFI MemdescVersion, 204
EFI Memmap, 204
EFI MemmapSize, 204
EFI Systab, 204
EnablePreemption, 35
EnablePreemptionFaultException, 35
endian, 3
ErrInvalidParam, 34, 75
ErrInvalidScheduler, 24
ErrInvalidSpace, 24, 45
ErrInvalidThread, 21, 24, 33
ErrKipArea, 45
ErrNoMem, 24
ErrNoPrivilege, 24, 33, 45, 73, 75
ErrorCode, 17, 21, 24, 33, 45, 66, 73, 75
ErrUtcbArea, 24, 45

216 INDEX

exception
handling, 70
message

amd64, 175
arm, 195
ia32, 101
ia64, 118
mips64, 160
powerpc, 127
ppc64, 140

protocol, 82
ExceptionHandler, 17, 70
ExchangeRegisters, 20
eXecutable, 39
ExternalFreq, 10

Feature, 9
Flush, 42
Fpage, 39
fpage, 38–39

mapping, 61
receiving, 59
unmapping, 38, 40–42

FpageLog2, 39
FullyAccessible, 39

generic binary interface, vi
generic bootinfo, 199–204

data structure, 199–200
generic record, 200–201

generic programming interface, vi
Get, 51, 52
GetStatus, 42
global thread ID, 14
GlobalId, 15, 20
GlobalMemory, 126
GrantItem, 55
GuardedMemory, 126

High, 9

include files, viii
IntendedReceiver, 17, 66
InternalFreq, 10
interrupt

association, 22
thread ID, 14

IO fpage, 97, 172
IoFpage, 97, 172
IoFpageLog2, 97, 172
IoFpagePort, 97
IoFpageSize, 97
IoFpageSizeLog2, 97
IPC, 61–67

aborting, 18
cross cpu, 64
propagation, 62

Ipc, 65
IpcFailed, 66
IpcPropagated, 66
IpcRedirected, 66
IpcSucceeded, 66
IpcXcpu, 66
IsGlobalId, 15
IsIoFpage, 97
IsLocalId, 15
IsNilFpage, 39

IsNilThread, 15
IsVirtual, 9

kernel features, 5
ia32, 96

kernel interface page
location, 43

kernel interface page, 2–10
data structure, 2–6
retrieving, 7–10

KernelGenDate, 8
KernelId, 8
KernelInterface, 8
KernelSupplier, 8
KernelVersion, 8
KernelVersionString, 9
KipAreaSizeLog2, 9

Label, 50, 51
LargeSpace, 98
Lcall, 66
Lipc, 65
lipc, 61
Load, 51
LoadBR, 11, 60
LoadBRs, 11, 60
LoadMR, 11, 52
LoadMRs, 11, 52
local ipc, 61
local thread ID, 14
LocalId, 15, 20
LocalMemory, 126
logical interface, vi
Low, 9
LreplyWait, 66

MapGrantItems, 59, 60
MapItem, 53, 54
MBI Address, 204
memory descriptor, 6, 87–88

ia64, 117
MemoryControl, 75
MemoryDesc, 9
message registers, 48–49

alpha, 144–145
amd64, 164–165
arm, 188–189
ia32, 91
ia64, 106–107
mips64, 152–153
powerpc, 120–121
ppc64, 132–133
sparc64, 180–181

messages
generating, 48–52

model specific registers, 102, 176
Module Cmdline, 203
Module Size, 203
Module Start, 203
MR, see message registers
MsgTag, 50, 51
MyGlobalId, 15, 17
MyLocalId, 15, 17
Myself, 15, 17

NaTPageMemory, 116
Never, 28

INDEX 217

Next, 201
Nilpage, 39
Niltag, 50
nilthread, 15
NoAccess, 39
NumMemoryDescriptors, 8
NumProcessors, 8

page
access rights, 4, 38, 53, 55, 80, 84

changing, 40, 53, 55
inspecting, 41

attributes, 84
amd64, 174
arm, 193
ia32, 100
ia64, 116
mips64, 159
powerpc, 126
ppc64, 139

size, 3
pagefault

protocol, 80
Pager, 17, 20
pager, 80

changing, 17, 20, 23
PageRights, 8
PageSizeMask, 8
PAL procedure calls, 108
PAL Call, 108
PCI Config fpage, 114
PCI Configuration Space

ia64, 108, 114
PCIConfigFpage, 114
PCIConfigFpageLog2, 114
preemption, 32, 35

protocol, 81
PreemptionPending, 35
privileged threads, vii
ProcDesc, 9
processor-specific binary interface, vi
ProcessorControl, 73
ProcessorNo, 16
ProcessorNo, 17
propagation, 62
Put, 51, 52

RcvWindow, 60
RDMSR, 102, 176
Readable, 38
ReadeXecOnly, 39
ReadPrecision, 9
Receive, 66
redirection, 44, 62
Reply, 66
ReplyWait, 66
ReservedMemoryType, 9
Rights, 39

SAL procedure calls, 108
SAL Call, 108
SAL PCI ConfigRead, 108
SAL PCI ConfigWrite, 108
SameThreads, 15
Schedule, 33
SchedulePrecision, 9
segments, 102, 176

Send, 66
send base, 53
sensitive prio, 32
Set CopFlag, 17, 71
Set ExceptionHandler, 17, 70
Set Label, 51
Set MsgTag, 50, 51
Set PageAttribute, 75
Set Pager, 17, 20
Set PagesAttributes, 75
Set PreemptionDelay, 33
Set Priority, 33
Set ProcessorNo, 33
Set Propagation, 67
Set Rights, 39
Set Timeslice, 33
Set UserDefinedHandle, 17, 20
Set VirtualSender, 17, 67
Set XferTimeouts, 17
SharedMemoryType, 9
sigma0, 83

protocol, 83–85
SimpleExec BssPstart, 203
SimpleExec BssSize, 204
SimpleExec BssVstart, 203
SimpleExec Cmdline, 204
SimpleExec DataPstart, 203
SimpleExec DataSize, 203
SimpleExec DataVstart, 203
SimpleExec Flags, 204
SimpleExec InitialIP, 204
SimpleExec Label, 204
SimpleExec Set Flags, 204
SimpleExec Set Label, 204
SimpleExec TextPstart, 203
SimpleExec TextSize, 203
SimpleExec TextVstart, 203
Size, 39
SizeLog2, 39
Sleep, 66
small spaces, 98
SmallSpace, 98
SndBase, 54, 55
SndFpage, 54, 55
SpaceControl, 45
SpeculativeMemory, 126
Start, 21
Stop, 21
Store, 51
StoreBR, 11, 60
StoreBRs, 11, 60
StoreMR, 11, 52
StoreMRs, 11, 52
StringItem, 57
StringItems, 60
StringItemsAcceptor, 59
strings, 56–58

receiving, 59
Substring, 57
Substrings, 57
system thread, 14
system thread, 66
system-call links, 5

alpha, 146–149
amd64, 167
arm, 190

218 INDEX

ia32, 93
ia64, 109
mips64, 154–158
powerpc, 122–125
ppc64, 134
sparc64, 182

SystemBase, 4
SystemClock, 27

TCR, see thread control registers
thread

creation, 22
halting, 18
ID, 14
id, 15, see thread ID
migration, 32
priority, 31
privileged, vii
startup protocol, 78
state, 21, 32
version, 14, 22

thread control registers, 16–17
alpha, 144
amd64, 164
arm, 188
ia32, 90
ia64, 106
mips64, 152
powerpc, 120
ppc64, 132
sparc64, 180

thread ID, 14–15
retrieving, 17, 20

ThreadControl, 24
ThreadIdBits, 8
ThreadIdSystemBase, 8
ThreadIdUserBase, 9
ThreadNo, 15
ThreadSwitch, 30
ThreadWasHalted, 21
ThreadWasIpcing, 21
ThreadWasReceiving, 21
ThreadWasSending, 21
time, 28–29
time quantum, 31
Timeouts, 67
TimePeriod, 28
TimePoint, 29
Timeslice, 33
timeslice, 31

donation, 30
Type, 9, 201
TypedWords, 50

UncacheableExportedMemory, 116
UncacheableMemory, 100, 116, 174
UndefinedMemoryType, 9
Unmap, 41
UntypedWords, 50
UntypedWordsAcceptor, 59
upward compatibility, vii
UseDefaultCacheLineAllocation, 57, 99, 115, 173
UserBase, 4
UserDefinedHandle, 16, 19
UserDefinedHandle, 17, 20
using the API, viii
UTCB

location, 43
size, 4, 23, 43

UtcbAlignmentLog2, 9
UtcbAreaSizeLog2, 9
UtcbSize, 9

Version, 15
virtual registers, 11

Wait, 66
WaseXecuted, 42
WasReferenced, 42
WasWritten, 42
Word, vii
Word16, vii
Word32, vii
Word64, vii
Writable, 38
WriteBackMemory, 100, 116, 126, 174
WriteCoalescingMemory, 116
WriteCombiningMemory, 100, 174
WriteProtectedMemory, 100, 174
WriteThroughMemory, 100, 126, 174
WRMSR, 102, 176

XferTimeouts, 17

Yield, 30

ZeroTime, 28

	Title Page
	Contents
	About This Manual
	Introductory Remarks
	Understanding This Document
	Notation
	Using the API
	Revision History

	1 Basic Kernel Interface
	1.1 Kernel Interface Page
	1.2 KernelInterface
	1.3 Virtual Registers

	2 Threads
	2.1 ThreadId
	2.2 Thread Control Registers (TCRs)
	2.3 ExchangeRegisters
	2.4 ThreadControl

	3 Scheduling
	3.1 Clock
	3.2 SystemClock
	3.3 Time
	3.4 ThreadSwitch
	3.5 Schedule
	3.6 Preempt Flags

	4 Address Spaces and Mapping
	4.1 Fpage
	4.2 Unmap
	4.3 SpaceControl

	5 IPC
	5.1 Messages And Message Registers (MRs)
	5.2 MapItem
	5.3 GrantItem
	5.4 StringItem
	5.5 String Buffers And Buffer Registers (BRs)
	5.6 Ipc

	6 Miscellaneous
	6.1 ExceptionHandler
	6.2 Cop Flags
	6.3 ProcessorControl
	6.4 MemoryControl

	7 Protocols
	7.1 Thread Start Protocol
	7.2 Interrupt Protocol
	7.3 Pagefault Protocol
	7.4 Preemption Protocol
	7.5 Exception Protocol
	7.6 Sigma0 RPC protocol
	7.7 Generic Booting

	A IA-32 Interface
	A.1 Virtual Registers
	A.2 Systemcalls
	A.3 Kernel Features
	A.4 IO Ports
	A.5 Space Control
	A.6 Cacheability Hints
	A.7 Memory Attributes
	A.8 Exception Message Format
	A.9 Processor Mirroring
	A.10 Booting

	B IA-64 Interface
	B.1 Virtual Registers
	B.2 PAL and SAL Access
	B.3 Systemcalls
	B.4 PCI Configuration Space
	B.5 Cacheability Hints
	B.6 Memory Attributes
	B.7 Memory Descriptors
	B.8 Exception Message Format

	C PowerPC Interface
	C.1 Virtual Registers
	C.2 Systemcalls
	C.3 Memory Attributes
	C.4 Exception Message Format
	C.5 Processor Mirroring
	C.6 Booting

	D PowerPC64 Interface
	D.1 Virtual Registers
	D.2 Systemcalls
	D.3 Memory Attributes
	D.4 Exception Message Format
	D.5 Booting

	E Alpha Interface
	E.1 Virtual Registers
	E.2 Systemcalls
	E.3 Booting

	F MIPS-64 Interface
	F.1 Virtual Registers
	F.2 Systemcalls
	F.3 Memory Attributes
	F.4 Exception Message Format
	F.5 Booting

	G AMD64 Interface
	G.1 Virtual Registers
	G.2 Systemcalls
	G.3 IO Ports
	G.4 Cacheability Hints
	G.5 Memory Attributes
	G.6 Exception Message Format
	G.7 Processor Mirroring
	G.8 Booting

	H SPARC v9 Interface
	H.1 Virtual Registers
	H.2 Systemcalls

	I ARM Interface
	I.1 Virtual Registers
	I.2 Systemcalls
	I.3 Memory Attributes
	I.4 Space Control
	I.5 Exception Message Format
	I.6 Booting

	J Generic BootInfo
	J.1 Generic BootInfo
	J.2 BootInfo Records

	K Development Remarks
	K.1 Exception Handling

	Table of Procs, Types, and Constants
	Index

